

RESEARCH ARTICLE

A SURVEY ON AR EDUCATIONAL APPLICATIONS: ENHANCING LEARNING THROUGH AUGMENTED REALITY

Harsha Jain^{1, *}, Daksha Pawar¹, Shreya Shitole¹, Balaji Yadav¹, Shankar Amalraj¹

¹Department of Computer Engineering, Savitribai Pune Phule University, Pune, India

*Corresponding e-mail: arsha.jain.surendra@gmail.com

Abstract – In today's classrooms, traditional teaching methods often fail to fully engage students, making it harder for them to grasp complex concepts. To tackle this issue, there is a growing need for interactive tools that can enhance learning experiences. Our project addresses this by developing an Augmented Reality (AR) Educational Application that brings learning materials to life. Using AR, we allow students to visualize and interact with 3D models related to their subjects. The application works by overlaying digital information onto the physical world, guiding students through various concepts in an engaging way. Initial testing has shown that this approach significantly improves both engagement and understanding.

Keywords – AR Education, Augmented Reality Learning, Interactive Learning, AR Classroom.

1. INTRODUCTION

ISSN: 2584-1041

In recent years, augmented reality (AR) has emerged as a transformative technology with potential to reshape education. Originally rooted in military and aviation training in the 1960s AR technology was designed to provide real time data overlays on physical environments, enhancing situational awareness and interaction [1]. Nowadays the research-based education is popular and it cannot be integrated with the text book scheme, because of the extensive file system of images and databases [2][3][4]. From these early beginnings, AR has expanded into various fields, with education proving to be one of the most impactful areas for its development. By blending digital elements with the physical world, AR enhances visualization and interaction, making learning more dynamic and engaging [5]. A review of the literature indicates that AR applications in education are increasingly diverse, covering subjects from science and mathematics to history and language arts. Researchers have shown that AR's interactive approach supports students understanding of complex concepts by visualizing information in 3D models and simulations. For instance, studies in science education demonstrate that AR applications can bring abstract concepts like atomic structures or ecosystems to life, allowing students to explore them with greater depth [6]. Additionally, AR has been integrated into fields like medical training and engineering, where hands-on practice is crucial, but often limited by resources and safety concerns. Despite its promise, several

challenges have emerged in adopting AR for educational purposes, including issues related to accessibility, technological limitations and the need for substantial instructional design to make the most of AR's unique features [7]. From these studies, it is clear that while AR holds significant potential for enhancing educational experiences, current implementations often lack alignment with curriculum standards or face barriers related to device compatibility and accessibility [8]. These limitations suggest that although AR can make education more immersive and interactive, students and educators may not fully benefit from it without adequate resources or integration strategies. Furthermore, most AR applications tend to focus on content delivery rather than promoting critical thinking or problem solving, indicating a need for more sophisticated and pedagogically sound AR-based solutions. identifying these gaps highlights the need for an AR educational application. That not only supplements traditional learning, but also supports curriculum goals and learning outcomes. This project proposes a versatile AR platform that aligns with educational standards while providing teachers and students with a user friendly, customizable tool for enhancing engagement. By focusing on accessibility and curriculum relevance, the proposed application aims to bridge the current gaps and foster a learning environment where students can explore, experiment and interact with digital information in meaningful ways. Through this project, we hope to demonstrate how AR can be seamlessly integrated into the classroom, offering a valuable educational tool that complements traditional methods and enhances student engagement across subjects.

2. LITERATURE SURVEY

Chang et al. found that AR applications helped students understand complex scientific concepts by visualizing abstract information in a tangible way. Increased engagement also correlated with better retention rates in their experiments, suggesting AR's effectiveness in keeping students involved in the material [9]. Wu, Lee, et al revealed that AR helps develop spatial abilities and visualization skills, which are crucial for STEM education. Students using AR-based activities demonstrated better spatial

understanding, particularly in subjects like geometry and anatomy, where three-dimensional visualization is essential [10]. Klopfer et al explored AR's role in science education, specifically in biology and environmental science. AR-based simulations allowed students to engage in virtual dissections and explore ecological systems, enhancing their comprehension of scientific processes. Their findings emphasize AR's potential to deepen understanding through hands-on, interactive learning in science classrooms [11][12]. Duenser et al found that AR can facilitate collaboration by enabling multiple students to interact with the same augmented content [13]. This feature is especially beneficial for group activities, where teamwork and cooperation are essential skills. The study shows that AR creates a shared space for learners to collaborate, discuss, and problem-solve together. Tommy et al reported that AR applications significantly increased students' motivation and interest in learning. Their research highlighted that the gamified nature of many AR educational tools led to higher levels of enthusiasm, reducing the likelihood of boredom and disengagement in the classroom [12]. Ibáñez et al. demonstrated that AR applications in language learning allowed students to practice vocabulary, grammar, and pronunciation interactively. Their research indicated that AR could create contextualized learning environments that help language learners understand cultural contexts and improve language retention [14][15].

Yoon et al. show that AR can bring historical and cultural content to life, making it particularly valuable for history education. By virtually reconstructing historical events or sites, students can engage in experiential learning that fosters a deeper understanding of historical narratives and cultural backgrounds. Bacca et al. suggests that AR can provide real-time feedback, enabling immediate assessment of students' understanding. This immediate feedback loop allows educators to modify lessons based on students' needs, making learning more adaptive and responsive. Tsai et al (2013) found that AR can promote problem-solving skills by presenting challenges within AR scenarios. For example, students working on physics problems with AR tools showed improved critical thinking and problem-solving abilities due to the dynamic and interactive nature of the challenges [9][16][17][18]. Huang et al. demonstrated that AR is particularly effective in medical training, where students benefit from visualizing complex anatomical structures. The study showed that AR-based simulations can improve medical students' understanding of anatomy, surgical procedures, and diagnostics, reducing their reliance on cadavers and other traditional methods. Ansi et al (2017) examined how AR enhances distance and hybrid learning by providing virtual, interactive learning experiences that mimic in-person classroom environments [15]. Their study highlighted AR's potential to bridge the gap between physical and remote education by allowing remote learners to engage in interactive exercises similar to those experienced in physical classrooms. Di Serio et al. found that AR technology positively affects memory retention by providing multisensory learning experiences. Their research concluded that AR aids long-term retention because students interactively engage with content, making the learning process more memorable. Escobedo et al. indicate that AR can support special education by offering tailored learning experiences for students with disabilities. For instance, AR applications designed for autistic children have shown improvements in social and cognitive skills through guided, interactive scenarios. Chen et al shows that AR in mathematics education helps students visualize abstract concepts and improve calculation skills. Their findings suggest that interactive AR elements allow students to grasp complex mathematical principles more easily by breaking them down into step-by-step visuals. Bailey et al explored teachers' readiness to integrate AR into their curriculum. Their research found that while many teachers see potential benefits in AR, concerns about training, cost, and classroom management persist. Teacher training and resource allocation are essential factors to consider for successful AR integration in educational settings [19]. Marco Simonetti et al: Recent advances in ICT have sparked research into the effects of Virtual and Augmented Reality on learning. This study evaluated the impact on student learning through trials conducted in three high schools, involving 162 students. The applications included a Virtual Reality environment and an AR application that uses smartphone screens to view 3D figures [20]. Results indicate that 94.43% of students find AR a valuable educational tool, emphasizing the need for inclusive design to accommodate all students regardless of technological familiarity. The analysis highlights AR's effectiveness, appreciated for its intuitive and immersive qualities, with strong potential to foster collaborative learning [21]. Tanvir Alam et al Technology, particularly mobile applications, has revolutionized various fields, notably education. AR applications enable interactive, 3D visualization of concepts, improving comprehension, engagement, and motivation. This paper systematically examines AR applications across platforms, content types, and usability metrics, while acknowledging limitations related to hardware availability, internet connectivity, and computational constraints. The review also suggests future directions for AR in education, providing educators with insights into its pedagogical and technological implications [1][4]. Hao Cheong et al discusses the conceptual and practical development of AR in education, with a focus on physics. It outlines how AR can integrate traditional learning materials with interactive, realtime scenarios accessible on mobile devices. AR enhances engagement beyond classroom settings, offering insights into practical applications and future challenges in incorporating AR into educational curricula, specifically physics education [22].

3. RESULTS AND DISCUSSIONS

This bar graph demonstrates a comparison between traditional learning methods and AR enhanced learning across three key educational outcomes: Knowledge Retention, Engagement Levels and Test Scores. The results show that AR-enhanced learning generally leads to higher scores in each category.

• Knowledge Retention improved with AR reflecting an 85% retention rate versus a 60% rate with traditional methods.

- Engagement Levels were also notably higher with AR at 90%, compared to 65% in traditional learning settings.
- Test Scores similarly increased, showing an 88% score with AR integration versus 70% with traditional methods.
- These results suggest that AR can be a powerful tool in enhancing students understanding, maintaining their interests and improving their performance in educational settings.

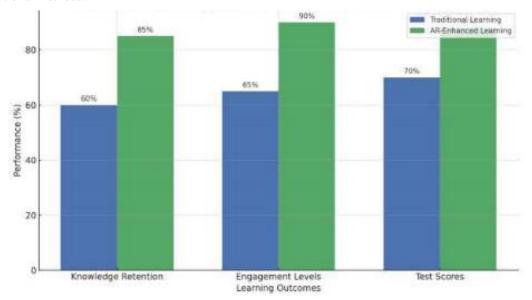


Figure 1. Comparison of learning outcomes: Traditional Vs AR-Enhanced learning

Incorporating innovative educational tools offers several benefits, such as increased engagement among students and improved visualization of complex concepts, which can lead to better knowledge retention. These tools also support hands-on learning, allowing students to interact with the material in a more meaningful way. However, there are notable limitations to consider. High initial costs can be a barrier to implementation, and device compatibility issues may arise, hindering the effectiveness of these tools across different platforms. Additionally, teachers may require training to effectively utilize these resources, and there may be limited subject coverage, which could restrict their applicability in certain areas of the curriculum.

Table 1. Overview of AR in Education with different Platform

Application Name	Subjects Covered	Target Age Group	Key Features	Learning Outcomes	Limitations
Google Expeditions	Science, Geography, History	Middle to High School	Immersive VR and AR experiences for virtual field trips	Improved spatial awareness, engagement with historical/scientific content	Requires specific devices (e.g., Google Cardboard)
Merge Cube	Science, Math.	All ages.	Interactive 3D models, anatomy solar system, molecular structures.	Enhanced understanding of complex concepts through hands on interaction.	Limited compatibility with some devices.
Quiver Vision.	Arts, science.	Elementary school.	Coloring-to-AR animations, interactive coloring sheets.	Boosts creativity and understanding of visual concepts.	Limited subject coverage.
JigSpace	Engineering, biology physics.	All ages.	3D models of machines, anatomy, physics demonstrations.	Hands on learning, improved conceptual understanding of mechanisms.	Premium features require subscription.
AR circuits.	Physics (Electric Circuits)	Middle and High school.	Interactive circuit building in AR.	Deepens understanding of electrical circuits	Requires compatible AR devices.

				through interactive learning.	
Assembler EDU	All subjects.	All ages	3D visualization for a range of subjects, supports multimedia projects.	Encourages creativity, improves engagement.	Requires stable Internet. and device compatibility.
Hologo	Biology, Chemistry, Geography.	Middle and high school.	3D Animations for human anatomy, earth sciences.	Facilitates deep understanding of biology and chemistry.	Some features may be behind a pay wall.
SkyView	Astronomy	All ages.	Real time AR star and planet identification.	Encourages exploration, improves knowledge of astronomy.	Limited to astronomy, dependent on outdoor conditions.

The table provides a comparison of popular AR applications, commonly used in education, showing what each app offers, the learning outcomes it promotes and any notable limitations.

4. CONCLUSION

- In summary, the AR Educational Application has shown great promise in revolutionizing the way students engage with learning material. By integrating augmented reality into educational practices, the app enhances understanding and retention of complex concepts through interactive experiences.
- User feedback highlights an increase in motivation and interest, with many students reporting that the immersive features made learning feel made learning feel more enjoyable and effective compared to traditional methods.
- Furthermore, the application empowers educators by providing innovative tools for lesson delivery, allowing for tailored approaches that meet diverse student needs. The positive outcomes suggest that augmented reality can significantly enhance educational experiences and outcomes.
- Looking ahead, ongoing development will focus on expanding content offerings and assessing the application's effectiveness across various educational settings and demographics. Overall, the finding from this project illustrates the exciting potential of AR technology in creating a more engaging and effective learning environment.

CONFLICTS OF INTEREST

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

FUNDING STATEMENT

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

ACKNOWLEDGEMENTS

The author would like to express his heartfelt gratitude to the supervisor for his guidance and unwavering support during this research for his guidance and support.

REFERENCES

- [1] F. Zulfiqar, R. Raza, M. O. Khan, M. Arif, A. Alvi, and T. Alam, "Augmented Reality and its Applications in Education: A Systematic Survey," *IEEE Access*, vol. 11, pp. 143250–143271, 2023, [CrossRef] [Google Scholar] [Publisher Link]
- [2] N. Vijaya et al., "ZIF-67 derivatives of NiCo2S4 Decorated in Salen-Complex Amine Functionalization GO Layers for High-Performance Applications in Supercapacitor Devices," *Luminescence*, vol. 39, no. 11, 2024, [CrossRef] [Google Scholar] [Publisher Link]
- [3] K. R. Kasture, W. V. Patil, and A. Shankar, "Comparative Analysis of Deep Learning Models for Early Prediction and Subtype Classification of Ovarian Cancer: A Comprehensive Study," *Int. J. Intell. Syst. Appl. Eng.*, vol. 12, no. 7s, pp. 507–515, 2024. [CrossRef] [Google Scholar] [Publisher Link]
- [4] A. Fredderics et al., "The FHA analysis of dual-bridge LLC type resonant converter," *Int. J. Power Electron. Drive Syst.*, vol. 4, no. 4, pp. 538–546, 2014, [CrossRef] [Google Scholar] [Publisher Link]
- [5] N. F. Saidin, N. D. A. Halim, and N. Yahaya, "A review of research on augmented reality in education: Advantages and applications," *Int. Educ. Stud.*, no. 13, pp. 1–8, 2015, [CrossRef] [Google Scholar] [Publisher Link]
- [6] P. Dhar, T. Rocks, R. M. Samarasinghe, G. Stephenson, and C. Smith, "Augmented reality in medical education: students' experiences and learning outcomes," *Med. Educ. Online*, vol. 26, no. 1, 2021, [CrossRef] [Google Scholar] [Publisher Link]
- [7] S. P. Deshmukh, D. Choudhari, S. Amalraj, and P. N. Matte, "Hybrid Deep Learning Method for Detection of Liver Cancer," *Comput. Assist. Methods Eng. Sci.*, vol. 30, no. 2, pp. 151–165, 2023, [CrossRef] [Google Scholar] [Publisher Link]
- [8] J. Quintero, S. Baldiris, R. Rubira, J. Cerón, and G. Velez, "Augmented reality in educational inclusion. A systematic review on the last decade," *Front. Psychol.*, vol. 10, no. AUG, pp. 1–14, 2019, [CrossRef] [Google Scholar] [Publisher Link]
- [9] H. Y. Chang et al., "Ten years of augmented reality in education: A meta-analysis of (quasi-) experimental studies to investigate the impact," *Comput. Educ.*, vol. 191, no. May, p. 104641, 2022, [CrossRef] [Google Scholar] [Publisher Link]
- [10] C. Söderström, P. Mikalef, A. Dypvik Landmark, and S. Gupta, "Augmented reality (AR) marketing and consumer responses: A study of cue-utilization and habituation," *J. Bus.*

- Res., vol. 182, no. June, 2024, [CrossRef] [Google Scholar] [Publisher Link]
- [11] Y. Koumpouros, "Revealing the true potential and prospects of augmented reality in education," *Smart Learn. Environ.*, vol. 11, no. 1, 2024, [CrossRef] [Google Scholar] [Publisher Link]
- [12] S. Amalraj and P. A. Michael, "Synthesis and characterization of Al2O3 and CuO nanoparticles into nanofluids for solar panel applications," *Results Phys.*, vol. 15, Dec. 2019, [CrossRef] [Google Scholar] [Publisher Link]
- [13] W. Cao and Z. Yu, "The impact of augmented reality on student attitudes, motivation, and learning achievements—a meta-analysis (2016–2023)," *Humanit. Soc. Sci. Commun.*, vol. 10, no. 1, pp. 1–12, 2023, [CrossRef] [Google Scholar] [Publisher Link]
- [14] M. Kesim and Y. Ozarslan, "Augmented Reality in Education: Current Technologies and the Potential for Education," *Procedia - Soc. Behav. Sci.*, vol. 47, no. 222, pp. 297–302, 2012, [CrossRef] [Google Scholar] [Publisher Link]
- [15] A. M. Al-Ansi, M. Jaboob, A. Garad, and A. Al-Ansi, "Analyzing augmented reality (AR) and virtual reality (VR) recent development in education," *Soc. Sci. Humanit. Open*, vol. 8, no. 1, p. 100532, 2023, [CrossRef] [Google Scholar] [Publisher Link]
- [16] S. M. Kassutto, C. Baston, and C. Clancy, "Virtual, Augmented, and Alternate Reality in Medical Education: Socially Distanced but Fully Immersed," ATS Sch., vol. 2, no. 4, pp. 651–664, 2021, [CrossRef] [Google Scholar] [Publisher Link]
- [17] V. B. Korde, S. Khot, D. B. Kamble, and S. Amalraj, "Review: Perovskite nanostructures materials versatile platform for advance biosensor applications," *Sensors and Actuators Reports*, vol. 7, no. May, p. 100201, 2024, [CrossRef] [Google Scholar] [Publisher Link]
- [18] S. Goyal, A. Shankar, K. C. Das, A. Singh, S. Oli, and M. M. Sati, "Manual and Adaptive tuned PID controllers for industrial application," 2024 4th Int. Conf. Adv. Comput. Innov. Technol. Eng. ICACITE 2024, pp. 1953–1958, 2024, [CrossRef] [Google Scholar] [Publisher Link]
- [19] M. Zapata, C. Ramos-Galarza, K. Valencia-Aragón, and L. Guachi, "Enhancing mathematics learning with 3D augmented reality escape room," *Int. J. Educ. Res. Open*, vol. 7, no. June, 2024, [CrossRef] [Google Scholar] [Publisher Link]
- [20] D. Kamińska et al., "Augmented Reality: Current and New Trends in Education," *Electron.*, vol. 12, no. 16, 2023, [CrossRef] [Google Scholar] [Publisher Link]
- [21] O. Gervasi, D. Perri, and M. Simonetti, "Empowering Knowledge With Virtual and Augmented Reality," *IEEE Access*, vol. 11, pp. 144649–144662, 2023, [CrossRef] [Google Scholar] [Publisher Link]
- [22] J. W. Lai and K. H. Cheong, "Educational Opportunities and Challenges in Augmented Reality: Featuring Implementations in Physics Education," *IEEE Access*, vol. 10, pp. 43143– 43158, 2022, [CrossRef] [Google Scholar] [Publisher Link]

AUTHORS

Harsha Jain in the Department of Computer Engineering at KJ College of Engineering and Management Research Pune. She specialized in Internet of Things and Embedded Systems. Her Research interests focus on CMOS chip design. In addition to research, she is committed to mentoring undergraduate students and has contributed to various interdisciplinary projects aimed at AI and ML, IoT., etc.

Daksha Pawar received his B.E. degree in Computer Engineering from Savitribai Phule Pune University, Pune, Maharashtra, India. As a researcher involved in exploring Reality Augmented (AR) Technology. Currently working on an AR Educational Application, aims to enhance interactive learning experiences through immersive technology. Previously, she also conducted research on Magnetic Levitation, successfully publishing a paper on the topic. With a strong

interest in emerging technologies and their applications in education, she is dedicated to developing innovative solutions that bridge the gap between technology and learning.

Shreva Shitole received his B.E degree in Computer Engineering from Savitribai Pune University, Maharashtra, India. As a student and a researcher focusing on the future scope and advancements of the AR Educational Application project. She analyses emerging trends and potential enhancements to ensure the long-term impact of AR in education. Her research explores how augmented reality can

evolve to create more immersive, accessible, and effective learning experiences in the future.

Balaji Yadav received his B.E degree in Computer Engineering from Savitribai Phule Pune University, Pune, Maharashtra, India. As a student and a researcher contributing to the implementation, construction, and methodology aspects of the AR Educational Application project. With a strong technical background, he focuses on developing and refining the system architecture to ensure seamless integration of

augmented reality in education.

Shankar Amalraj received his B.E. degree in Electrical and Electronics Engineering from Anna University, Chennai, Tamil Nadu, India. He obtained his M. Tech degree in Power Systems from Kalasalingam University, Madurai, Tamilnadu. He earned his doctorate in Nanotechnology from the Karunya Institute of Technology and Sciences, Coimbatore. Currently, he is working as an Associate Professor at KJ College of Engineering and

Management Research, Pune. He is actively engaged in the fields of Artificial Intelligence and Computational Sciences.

Arrived: 08.11.2024 Accepted:10.12.2024