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Abstract – The vibration of mobile cleaning robots can indicate 

performance degradation or operational safety issues. 

Therefore, it is crucial to identify the cause of vibrations at an 

early stage in order to prevent functional loss and hazardous 

working conditions. To overcome these drawbacks, a novel 

Maintenance using SCB-LSTM (MASS) Robot system has been 

proposed for enhanced maintenance planning and real-time 

fault detection in cleaning robots. Initially, vibration data is 

collected during the robot's operation. This data is processed 

through a Stacked Convolutional neural network Bi-directional 

Long Short-Term Memory (SCB-LSTM) model to identify 

specific sources of vibration. The information is then sent 

wirelessly to a remote monitoring application, allowing users to 

track the robot's condition in real-time and diagnose issues 

efficiently. The suggested MASS technique has been assessed 

using a MATLAB simulator. The efficacy of the suggested 

MASS approach has been evaluated by utilizing parameters 

such as F1-score, recall, accuracy and precision respectively. 

The proposed MASS method achieves better accuracy of 

79.8%, 85.4%, and 88.1% than GPM [20], DBF [23], and KPM 

[25] methods. 

Keywords – Predictive maintenance, Real-time fault detection, 

Stacked CNN Bi-LSTM, remote monitoring. 

1. INTRODUCTION 

Nowadays, mobile cleaning robots are ubiquitous, being 

used everywhere from industries, homes, hypermarkets, 

airports, hospitals, and food courts to vacuum, mop, and 

sanitize [1]. In order to prevent malfunctions, catastrophic 

failures, and customer dissatisfactions, the robotic cleaning 

system needs to be maintained and deployed in an 

environment that is friendly to robots [2,3]. At present 

performance degradation and safety-related problems with 

professional cleaning robots are commonly observed through 

manual supervision. Unfortunately, the lack of past failure 

data makes it labor- and skill-intensive, time-consuming, and 

difficult to implement, particularly with the recently 

developed sophisticated cleaning robots [4–7].  

Furthermore, other problems including prolonged 

downtime, component underutilization, safety concerns from 

sudden failure, and high operating and maintenance expenses 

could be brought on by this periodic manual approach [8]. 

These difficulties are avoided by automated predictive 

maintenance techniques [9]. They are frequently employed 

in industrial robots and automobiles for continuous health 

tracking, efficiency decay prediction, hazardous operating 

conditions detection, and security system failure notification 

[10–12]. 

Predictive maintenance (PM) based on artificial 

intelligence (AI) has received a lot of attention especially for 

automated PM design. For fault identification and 

classification, it uses Machine Learning (ML) and Deep 

Learning (DL) models [13–15]. In order to provide a secure 

and effective service in a complex and dynamically changing 

environment, detect any efficiency decay, and prevent 

operational security issues, autonomous mobile cleaning 

robots are mandated to use the PM system [16–19]. To 

overcome these shortcomings, a novel MASS framework has 

been presented to forecast performance degradation and 

identify hazardous operating environments. The following 

are the main contributions of the suggested MASS method: 

• Initially, the vibration data is collected during 

robot’s operation and this data is fed into SCB-

LSTM model to classify the specific sources of 

vibration. 

• The classified information is then sent to a 

remote monitoring application, allowing users 

to track the robot's condition in real-time. 

• The primary advantage of the suggested 

method significantly enhances real-time 

monitoring and enabling efficient fault 

detection and maintenance planning through a 

remote app. 

• Evaluations of the suggested MASS 

framework's performance have been conducted 

using evaluation metrics, including recall, 

accuracy, F1-score, and precision. 

The remainder of the work has been organized as 

follows. Section 2 presents the literature review of PM in 

robots. Section 3 provides the suggested MASS technique in 

detail. Section 4 describes the experimental results and 
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discussion in detail. Section 5 describes the conclusion 

section. 

2. LITERATURE REVIEW 

This section is to describe the health monitoring systems 

that can predict early signs of failure of industrial and 

machines robots that are discussed in this paper. Some of 

those techniques are briefly discussed in this section. 

In 2023, Aivaliotis, P., et al., [20] proposed a generic PM 

framework (GPM) for complex machinery assets with 

multiple components and aspects in order to enable and 

execute the Digital Twin (DT) concept. The method's 

primary functions will be the planning of maintenance tasks 

and the evaluation of the machines' states. The work's 

findings demonstrate that developing, implementing, and 

running a DT with a 95% accuracy rate is achievable. 

In 2023, Mourtzis, D., et al., [21] proposed a method that 

use DT as well as PM for the prediction of remaining useful 

life (RUL) to enhance the reliability of robotic cells. As a 

result of the current research's findings, suitable periodic 

maintenance can be implemented, ensuring high reliability 

and averting major robotic cell failures. 

In 2023, Wang, X., et al., [22] provided a PM system 

that combines a decision support system for maintenance 

scheme assistance, a knowledge graph (KG) construction 

module for industrial robots (IRs), and a fault prediction 

module. The results demonstrate that the suggested system 

and approach function well when used on welding robots in 

a new energy car welding workplace.  

In 2024, Chakroun, A., et al., [23] provided a PM 

method based on ML and AI called Discrete Bayes Filter 

(DBF) to evaluate and predict the slow degradation of robots' 

power transmitters. The objective is to enable operators to 

make knowledgeable judgments about maintenance 

interventions. The results show that the DBF method 

outperforms the Naïve Bayes Filter (NBF) method in terms 

of predictive performance. 

In 2024, Kolvig-Raun, E.S., et al., [24] introduced a 

knowledge-based predictive model (KPM) that is intended to 

estimate a robotic joint's End of Life (EoL) so that its RUL 

can be predicted in relation to the specified load situation. 

With a lower limit of 90.3% for worst-case performance, the 

model exhibits a high degree of accuracy. 

In 2024, Jeon, J.E., et al., [25] suggested a novel PM 

approach to forecast the wafer transfer robot's error and 

categorize the fault's significance degree. The benefit of the 

suggested approach is that it uses the Mean-Shift (MS) 

algorithm to classify the degree of errors and applies a more 

accurate Gaussian mixture model (GMM) to differentiate 

mistakes from normal data. 

The approaches discussed above have certain 

shortcomings, including identifying a particular issue, its 

severity, or its RUL, and failing to take the external causes 

of degradation into consideration to predictive maintenance 

in robots. These flaws are effectively overcome by the 

suggested MASS technique, which is presented in the 

following section. 

3. MAINTENANCE USING STACKED CNN BI-LSTM 

(MASS) SYSTEM 

In this section, a novel MASS framework has been 

proposed for enhanced maintenance planning and real-time 

fault detection in cleaning robots. Initially, vibration data is 

collected during the robot's operation and categorized into 

normal, internal factors, or external factors. This data is 

processed through a SCB-LSTM to identify specific sources 

of vibration. The information is then sent wirelessly to a 

remote monitoring application, allowing users to track the 

robot's condition in real-time and diagnose issues efficiently. 

The block diagram for the suggested MASS method has been 

given in Figure 1. 

 

Figure 1. Overall proposed MASS technique 

3.1. Autonomous cleaning robot “Roomba” 

A Roomba robotic vacuum is an autonomous in-house 

cleaning device designed for automated floor vacuuming. 

The overall size of Roomba varies depending on the model, 

but typically it has a compact, round form factor, around 35 

cm in diameter and weighing approximately 3-4 kg. The 

robot is equipped with an array of sensors and smart 

technologies to perform autonomous cleaning tasks. A 

central processing unit (CPU) manages the operation of the 

robot, including navigation, obstacle detection, and cleaning 

operations. Roomba uses a brush-and-suction mechanism to 

clean debris, with different brush systems suited for various 

surfaces like carpets and hardwood floors. Roomba can be 

controlled and monitored via a Wi-Fi connection through the 

iRobot Home app, providing remote control, scheduling, and 

status updates. 

3.2. Vibration data acquisition phase 

This module uses five vibration classes as key 

indications for operational safety concerns and deterioration 

in the performance of mobile cleaning robots. As seen in 

Figure 2, it falls into three categories: internal factors, 

normal, and external factors. In this case, internal causes are 

responsible for compilation and composition-induced 

vibrations, whereas exterior factors are responsible for 

surface and strike-induced vibrations. 
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Figure 2. Classification of vibration sources 

3.3. Classification using Stacked CNN Bi-LSTM (SCB-

LSTM) 

After the vibration data is acquired, this work uses SCB-

LSTM to ensure both spatial and temporal information from 

the vibration signals are captured effectively for enhancing 

the classification accuracy. Experiments demonstrate that 

deep CNN and LSTM architectures with multiple hidden 

layers are capable of constructing increasingly complex 

representations of sequence data, and their performance is 

fairly good. This stacking-layers approach has the potential 

to improve neural network performance.  

CNN may gather spatial feature dimensions and extract 

spatial feature vectors from the input data in its capacity as a 

feature detector. CNNs make sense as the foundational layer 

of the paradigm proposed in this paper. The previous sections 

covered the use of both forward and backward dependencies 

in Bi-LSTMs. Both the temporal dependence and the spatial 

correlation in various areas of the feature information can be 

recorded throughout the feature learning process when 

supplying the Bi-LSTMs with the input sequence. This 

means that the Bi-LSTMs are ideally suited to be the first or 

second layer in the suggested model, following CNN, in 

order to extract valuable information from time series data.  

 

Figure 3. Architecture diagram of SCB-LSTM 

The last layer of the design just needs to anticipate future 

values by iteratively calculating in the forward direction and 

producing projected values using learned features, or the 

outputs from lower layers. Therefore, it would be preferable 

to include an LSTM layer as the final layer in the suggested 

model in order to capture forward dependency. 

To forecast the anomaly values, a deep architecture 

known as the SCB-LSTM was shown in Figure 3. The 

proposed model trains stacked bidirectional LSTMs (SB-

LSTMs) for feature learning after using stacked CNNs to 

extract features from vibration sensor data. Following this 

process, the feature learning is improved by the stacked 

unidirectional LSTMs (SU-LSTM), and at the end, the 

regression layer makes a fault detection prediction. 

3.4 Vibration source mapping phase 

This module interprets the classification results and 

maps them to specific sources of vibration, helping to 

diagnose the cause of the vibrations. For instance, if an 

internal factor is detected, the system may identify a specific 

component in the Roomba that requires attention. A PM map 

is produced by continually fusing the vibration source classes 

produced by the prediction algorithm into the grid map. 

Using the PM map, the maintenance team or user can see 
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what kinds of safety-related problems and performance 

deterioration are present in the deployment space. 

3.5 Remote monitoring Phase 

The Roomba robot's real-time prediction results can be 

visualized and controlled in teleoperation mode using a smart 

phone app, as illustrated in Figure 1. This gives users and 

technicians the ability to keep an eye on the Roomba's health 

in real time, giving them information about any possible 

problems or maintenance requirements. Using the MQTT 

messaging protocol, the app establishes a connection with the 

robot and gathers the anticipated data in either a request-

based or continuous manner. 

4. RESULT AND DISCUSSION 

In this 

section, the suggestedMASS framework has been 

implemented on a MATLAB simulator. In order to assess the 

efficacy of the suggested MASS framework, it has been 

compared with other techniques, including TLS [16], HDL-

AIDM [21], ACCeSS [23], and DTLS [25]. A number of 

important efficacy metrics such as F-measure, recall, 

accuracy and precision were evaluated in order to determine 

how well the MASS method performed. 

4.1. System implementation 

A component-oriented MASS approach has been 

developed, with an emphasis on the identification and 

categorization of malfunctioning behavior in the vital 

components of the robots. A DL algorithm has to be trained 

in order to finish developing the suggested technique. Both 

the data analysis and DL model training are done with 

MATLAB. In this study, SCB-LSTM are employed. Figure 

4 denotes the proposed Roomba robot we used in this paper. 

 

Figure 4. Hardware setup 

4.2. Performance evaluation 

The efficiency of the suggested MASS framework was 

compared with existing models such as GPM, DBF, and 

KPM. The technique’s efficacy was evaluated utilizing the 

statistical measure metrics of precision, accuracy, F-

measure, and recall (Equations (1)–(4)). According to the 

conventional confusion matrix, TN, TP, FN, and FP stand for 

true negatives, true positives, false negatives, and false 

positives, respectively. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (4) 

Figure 5. Performance analysis 

Figure 5 shows the recall, accuracy, f1-score, and 

precision comparison between the proposed MASS 

methodology and the current methods, including GPM, DBF, 

and KPM approaches. As can be seen from the comparison, 

the novel MASS method obtains an accuracy of 92.2%, 

which is greater than that of current methods like GPM [20], 

DBF [23], and KPM [25] models, which reach accuracy of 

79.8%, 85.4%, and 88.1%, respectively. 

 

(a) Normal class 

 

(b) Surface class 
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(c) Strike class 

 

(d) Compilation class 

 

(e) Composition class 

Figure 6. Vibration signals with various classes 

The time-amplitude graph for the raw vibration signal 

data obtained for each of the five classes across the three axes 

of each angular velocity signal type is displayed in Figure 6. 

The graphs show how the signals change as a function of 

various vibration source types visually. Plotted for a single 

sample of 128 data points, approximately 3.2 seconds of 

capture time. 

5. CONCLUSION 

In this research, a novel MASS approach has been 

suggested for enhanced maintenance planning and real-time 

fault detection in cleaning robots. We used an autonomous 

cleaning robot that we developed in-house to test and validate 

the suggested approach. Using the MATLAB simulator, a 

SCB-LSTM algorithm was created and trained on five 

vibration signal datasets produced by the Roomba robot 

under various health situations. The efficacy of the suggested 

MASS approach has been evaluated by utilizing parameters 

such as F1-score, recall, accuracy and precision respectively. 

The proposed MASS method achieves better accuracy of 

79.8%, 85.4%, and 88.1% than GPM [20], DBF [23], and 

KPM [25] methods. Future work should enhance self-

diagnosis and repair capabilities, optimizing robot design and 

maintenance strategies for greater operational efficiency and 

safety. 
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