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Abstract – Cloud Computing (CC) technology facilitates 

virtualized computer resources to users via service providers. 

Load balancing assumes a critical role in distributing dynamic 

workloads across cloud systems, ensuring equitable resource 

allocation without overwhelming or underutilizing virtual 

machines (VMs). However, uneven workload distribution poses 

a significant challenge in cloud data centers, hindering efficient 

resource utilization. To address these issues, this paper 

proposes a novel Dynamic Efficient Load Balancing in Cloud 

using kookaburra Infused pelican Optimization for virtUal 

Server (DELICIOUS) is developed for effective load balancing 

process in cloud computing environment. The Hybrid 

Kookaburra-Pelican Optimization Algorithm (HK-POA) is 

implemented for offloading decisions which optimizes resource 

allocation and enhances user experiences. The evaluation of the 

performance of the DELICIOUS framework involves a 

thorough assessment that includes essential metrics such as 

throughput, execution time, latency, waiting time, 

computational complexity, and computational cost. The 

simulation experiments of the proposed DELICIOUS 

framework are conducted using CloudSim and achieves a better 

throughput of 1206.6 Kbps whereas, the GRAF, QoDA-LB, and 

RATS-HM technique attains 865 Kbps, 943.4 Kbps, and 984.6 

Kbps respectively for intelligent load balancing in cloud 

networks. 

Keywords – Load Balancing, Cloud Computing, Kookaburra 

Optimization Algorithm, Pelican Optimization Algorithm. 

1. INTRODUCTION 

Cloud Computing enables the efficient utilization of 

computing resources through its dynamic service model, 

requiring adaptive resource allocation and scalability to 

ensure Quality-of-Service (QoS) while minimizing resource 

usage [1, 2]. These resources cover computing power, 

storage, databases, networking, planning, resource finding, 

security, and privacy. Load balancing involves distributing 

workload effectively across multiple computing platforms, 

aiming to optimize system output, resource utilization, and 

VM performance metrics. Various load-balancing algorithms 

are employed by the cloud system to achieve resource 

efficiency [3, 4]. 

Load balancing algorithms varies depending on the 

system's condition which distinguishes static and dynamic 

methods. Static algorithms rely on heuristics and are 

contingent on the current system state, while dynamic 

algorithms utilize metaheuristics and operate independently 

of specific conditions [5, 6]. Dynamic algorithms are 

particularly effective in environments where the volume of 

requests and VMs varies significantly. These algorithms 

perform better in redistributing workloads among VMs to 

rectify load imbalances [7, 8]. 

Load refers to the tasks allocated to VMs, which may 

lead to imbalances due to underutilization or overutilization. 

Overutilization happens when tasks allocated to a VM 

exceed its capacity threshold, whereas underutilization 

occurs when a VM can handle more tasks than it currently 

hosts [9-10]. Therefore, load balancing is crucial for 

maintaining equilibrium among cloud resources. Load 

balancing and task scheduling are both required to 

accomplish this balance and ensure equitable allocation 

among virtual machines [11]. 

The load balancing and task scheduling is essential for 

meeting QoS requirements which falls into the category of 

NP-hard problems due to the multitude of scheduling and 

balancing parameters. When a single VM becomes 

overloaded while numerous empty VMs exist within the 

cloud network, redistributing workloads from overloaded to 

underutilized VMs is advantageous [12]. In cloud 

environments, it might be challenging to calculate all 

possible mappings of task resources, and even more to 

identify optimal mapping. Therefore, an effective task 
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distribution method is needed to schedule tasks in a way that 

prevents VMs from becoming excessively overloaded or 

underloaded [13]. The major contributions of the proposed 

DELICIOUS approach are as follows, 

• This research proposes a novel, Dynamic Efficient 

Load Balancing in Cloud using kookaburra Infused 

pelican Optimization for virtUal Server (DELICIOUS) 

framework is to provide high quality services to 

customers in cloud computing applications. 

• Initially, a task scheduling process is implemented to 

assign deadlines and execution times to tasks, while a 

load balancing process ensures workload migration in 

case of VM violations, due to that maintains load 

balance in the cloud environment. 

• The performance evaluation of the DELICIOUS 

framework encompasses a comprehensive assessment, 

focusing on key metrics such as throughput, execution 

time, latency, waiting time, computational complexity, 

and computational cost. 

The remainder of the study is organized as follows. 

Section II contains related papers with updates on recent 

research and descriptions of load balancing and task 

scheduling. Additional details about the proposed framework 

are provided in Section III. Section IV presents the 

experimental results of the proposed framework. The 

conclusions and further research are presented in Section V. 

2. LITERATURE SURVEY 

This section contains a summary of the literature has 

been discussed in this research. The concept of load 

balancing is initially discussed, along with its established 

model, metrics, and algorithms. Subsequently, it discusses 

recent literature on Load Balancing, presenting suggested 

algorithms by researchers and comparing their proposals 

with existing algorithms in the field. 

In 2020, Devaraj, A.F.S., et al. [14] suggested a load 

balancing method with Firefly and Advanced Multi-

Objective Particle Ensemble Optimization (FIMPSO). The 

simulation results revealed that the FIMPSO algorithm 

achieved the most efficient outcomes, with a shortest 

common response time of 13.58ms, surpassing all other 

comparable techniques. It provides the highest CPU 

utilization of 98%, memory utilization of 93%, dependability 

rating of 67%, throughput of 72%, and maximum make span 

of 148% respectively. 

In 2021, Park, J., et al. [15] suggested GRAF, a proactive 

resource allocation technique utilizing graph neural networks 

to minimize overall CPU usage while assigning latency 

Service Level Objectives (SLOs). In comparison to 

autoscaling approaches, GRAF can achieve SLO latency 

with up to 19% of CPU consumption, according to 

experiments conducted using a number of publicly available 

benchmarks. Additionally, GRAF efficiently handles traffic 

spikes with 36% fewer resources than Kubernetes 

autoscaling and achieves faster latency convergence, up to 

2.6 times respectively. 

In 2022, Latchoumi, T.P., and Parthiban, L. [16] 

suggested to provide efficient resource scheduling in Cloud 

Computing (CC) scenarios with an essentially Quasi 

Opposite Dragonfly Algorithm technique for Load Balancing 

(QODA-LB). QODA-LB aimed to reduce task execution 

costs and times while ensuring an even distribution of 

workload across all VMs in the CC system. Simulation 

results demonstrated superior performance over leading 

methods, achieving optimal load balancing efficiency. 

In 2022, Bal, P.K., et al. [17] suggested RATS-HM, a 

hybrid machine learning approach that blends safe resource 

allocation in a cloud computing context with effective task 

scheduling. Through simulations across different setups, 

RATS-HM shows the effectiveness which is compared to 

other state-of-the-art methods. 

In 2023, Al Reshan, M.S., et al. [18] suggested an 

approach to load balancing in cloud computing which is fast 

and globally optimal. The suggested approach fused Gray 

Wolf Optimization with Particle Swarm Optimization 

(GWO-PSO) to achieve the advantages of both global 

optimization and quick convergence. By utilizing the GWO-

PSO algorithm, this technique improves PSO convergence to 

97.253% while reducing 12% on overall response times. 

In 2023, Ramya, K., and Ayothi, S., [19] suggested 

Hybrid Whale and Dingo Optimization Algorithm 

(HDWOA-LBM) approach for cloud computing 

environments. This approach imitates a dingo's hunting 

behavior, optimizes the assignment of tasks to the 

appropriate virtual computer. The simulation experiments of 

HDWOA-LBM achieve a significant improvement in 

throughput of 21.28%, reliability of 25.42%, make span of 

22.98%, and resource allocation of 20.86% for intelligent 

load balancing. 

In 2024, Khaleel, M.I., [20] suggested RASA and 

dynamic task scheduling approach to balance the load in a 

cloud computing system. The RASA approach categorizes 

the tasks based on critical parameters using a task 

classification model. This approach resulted in reductions in 

latency overhead of 9%, processing time of 14%, workload 

imbalance of 15%, energy consumption of 19%, and idle 

time of 26%, along with improvements in resource 

availability of 22%, resource efficiency of 27%, and 

throughput of 32% respectively. 

In order to address the above issues with cloud 

platforms, this research offers an agile task scheduling 

strategy that provides priority to crucial task characteristics 

including deadlines and durations which significantly affects 

the Quality of Service (QoS). Through meticulous 

scheduling and adherence to VM constraints, the algorithm 

ensures a well-balanced workload distribution across the 

cloud infrastructure. 

3. DYNAMIC EFFICIENT LOAD BALANCING IN 

CLOUD USING KOOKABURRA INFUSED 

PELICAN OPTIMIZATION FOR VIRTUAL 

SERVER 

In this section, a novel Dynamic Efficient Load 

Balancing in Cloud using Kookaburra-Infused Pelican 
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Optimization for Virtual Server (DELICIOUS) framework is 

proposed to deliver high-quality services to clients in Cloud 

Computing applications. The proposed DELICIOUS 

approach performs two main processes such as the task 

scheduling process, which is responsible for assigning 

deadlines and completion times to tasks, and the load 

balancing process, which manages the migration of 

workloads within Virtual Machine (VM) breach case to 

maintain load balance in cloud environment. Initially, the 

tasks requested by the user will be fed into the data center 

controller. These tasks are then passed to the load balancer, 

which uses a learning agent based on the Kookaburra-Pelican 

Hybrid Optimization Algorithm (HK-POA) to determine 

appropriate values and allocate tasks for machines in virtual 

environments suitable for cloud computing environments. 

The VM Manager then schedules tasks on the VM based on 

workload conditions such as underload and overload 

identified in the environment, using the migration process. 

The general block diagram of the proposed DELICIOUS 

framework is illustrated in Figure 1.

 

Figure 1. Proposed DELICIOUS Framework

3.1. Task classification 

In task classification, algorithm 1 describes the process 

of adding tasks to the queue, with the primary determining 

factor being the task deadline. The underlying cloud 

hardware can accommodate a predetermined number (v) of 

virtual machines (VMs) to host tasks that users submit to the 

cloud scheduler.  Dispatching these tasks presents challenges 

due to parameters such as 𝜏𝑐𝑝𝑢, 𝜏𝑚𝑒𝑚, 𝜏𝑒𝑒𝑑, 𝜏𝑑𝑒𝑑 , and 

𝜏𝑖𝑐  characterizing each task, alongside each VM being 

associated with ν𝑐𝑝𝑢 and ν𝑚𝑒𝑚, denoting CPU and memory 

resources, respectively. Each task demands a portion of the 

VMs' finite resources, contingent upon its size and duration. 

In response to this requirement, incoming workloads are 

classified into three distinct queues which is ϱ𝑐𝑝𝑢, ϱ𝑚𝑒𝑚, and 

ϱ𝑖𝑜. For example, ϱ𝑐𝑝𝑢 encompasses tasks necessitating 

intensive CPU utilization, ϱ𝑚𝑒𝑚 comprises those requiring 

substantial memory utilization, and ϱ𝑖𝑜 contains tasks with 

prolonged durations. 

Based on its parameters, each tasks speed is determined 

using R=(τ⁄S). The task category with the greatest rate is 

chosen as τC=max [R𝑐𝑝𝑢, R𝑚𝑒𝑚, R𝑖𝑜]. After being accepted, 

tasks are initiated and categorized into three groups which is 

τC𝑚𝑒𝑚, τC𝑐𝑝𝑢, and τC𝑖𝑜.. Then, the outer loop makes sure 

that each authorized task is finished on schedule. The 

execution time of each task is calculated, ensuring adherence 

to its Service Level Agreement (SLA), including its deadline. 

A queue, ϱ𝑞𝑢𝑒𝑢𝑒, is employed to organize all accepted tasks 

meeting their deadlines. The loop verifies that tasks are 

arranged suitably according to their requirements by 

continuously assessing the memory, CPU, and I/O speeds of 

each task. Tasks demanding significant CPU utilization are 

classified first, followed by those necessitating higher 

memory utilization, and finally, those requiring longer 

durations are separated. 

3.2. Load Balancing Via Hybrid K-POA 

This section commences by elucidating the inspiration 

and theoretical foundation behind the proposed Hybrid 

Kookaburra-Pelican Optimization Algorithm (HK-POA), 

followed by a mathematical modeling of its implementation 

steps for solving optimization problems. Kookaburra 

optimization is an iterative method for solving problems in 

the realm of problem solving that uses stochastic search to 

produce effective solutions to optimization problems. Based 

on the collective population matrix of Kookaburras, the 

Kookaburra Optimization Algorithm (KOA) is represented 

mathematically by equation (1). According to equation (2), 

kookaburras' starting locations during KOA deployment are 

chosen at random. 
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The general KOA matrix, represented by X includes the 

search space. N is the total number of kookaburras, with m 

optimal variables. A random number inside the interval [0, 

1] is shown, and the variables 𝑢𝑏𝑑 and 𝑙𝑏𝑑, respectively, 

indicate the lower and upper bounds of the ith decision 

variable through the variable r. Equation (3) demonstrates 

that a vector can be used to describe the collection of 

objective function values that were assessed for the task. 
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The vector F, where Fi identifies the objective function 

evaluated corresponding to the ith kookaburra, specifies the 

collection of objective functions assessed in this scenario. 

The prey set that each kookaburra has access to is then 

ascertained by comparing the values of the objective 

functions, as indicated by equation (4). 

𝐶𝑃𝑖 = {𝑋𝑘: 𝐹𝑘 < 𝐹𝑖𝑎𝑛𝑑 𝑘 ≠ 𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑖 =
1, 2, … … ,𝑁 𝑎𝑛𝑑 𝑘 ∈ {1, 2, … . . , 𝑁}                                   (4) 

In this case, the set of possible prey that the ith 

kookaburra can approach is shown by 𝐶𝑃𝑖. 𝐹𝑘 represents the 

objective function value in this instance, and 𝑋𝑘 represents 

the kookaburra with an objective function value greater than 

the ith kookaburra. Using equation (5), which mimics the 

kookaburra's path toward the prey while hunting, the bird's 

new location is ascertained. The kookaburra in concern will 

relocate to this new site if the objective function's value there 

rises, as demonstrated by equation (6). 

𝑥𝑖,𝑑
𝑝1

= 𝑥𝑖,𝑑 + 𝑟 (𝑆𝐶𝑃𝑖,𝑑 − 𝐼. 𝑥𝑖,𝑑), 𝑖 =

1, 2, … … ,𝑁,           𝑎𝑛𝑑 𝑑 = 1, 2, …… . ,𝑚                          (5) 

𝑋𝑖 = {
𝑥𝑖

𝑝1
,   𝐹𝑖

𝑝1
< 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
                                                         (6) 

𝐹𝑖
𝑝1

 represents the functional objective value, 𝑥𝑖,𝑑
𝑝1

 

represents the new recommended position of the ith 

kookaburra based on the first step of the KOA and 𝑥𝑖,𝑑
𝑝1

 

represents the kookaburra's dimension d. Furthermore, r is a 

random number selected from 0 to 1 based on a normal 

distribution. The 𝑆𝐶𝑃𝑖,𝑑 represents the d-th dimension of the 

prey chosen for the ith kookaburra, where i is a randomly 

chosen number from the set {1, 2}. N stands for the total 

number of kookaburras, and m for the number of decision 

variables. 

The KOA technique imitates the behaviour of 

kookaburras around hunting sites by utilizing equation (7) to 

determine an arbitrary location. Equation (8) indicates that 

the previous position will be replaced if the new location for 

each kookaburra raises the value of the objective function. 

𝑥𝑖,𝑑
𝑝2

= 𝑥𝑖,𝑑 + (1 − 2𝑟).
(𝑢𝑏𝑑−𝑙𝑏𝑑)

𝑡
, 𝑖 = 1, 2, … … ,𝑁, 𝑑 =

1, 2, … … ,𝑚, 𝑎𝑛𝑑 𝑡 = 1, 2, …… , 𝑇                                     (7) 

𝑋𝑖 = {
𝑥𝑖

𝑝2
,   𝐹𝑖

𝑝2
< 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
                                                        (8) 

The function's target value in this instance is 𝐹𝑖
𝑝2

, the dth 

dimension is represented by 𝑥𝑖
𝑝2

, and the ith kookaburra's 

proposed new location is 𝑥𝑖
𝑝2

, which is based on the second 

phase of KOA. Furthermore, T denotes the algorithm's 

maximum iteration count, and t denotes the algorithm's 

iteration counter. 

The proposed PO algorithm is a population-based 

approach where pelicans constitute the members of this 

population. Initially, the extracted features are randomly 

initialized within the lower and upper bounds of the problem 

using Equation (9). 

𝑀𝑝,𝑞 = ℎ𝑞 + 𝑟𝑎𝑛𝑑 ∙ (𝑘𝑞 − ℎ𝑞), 𝑝 = 1, 2, … , 𝑋, 𝑞 = 1, 2, …𝑦                    

(9) 

This equation gives the value of the variable qth, which 

is decided by the candidate solution pth, represented by 𝑀𝑝,𝑞 . 

The lower and upper bounds, represented by ℎ𝑞 and 𝑘𝑞, 

respectively, express the total population.  The mathematical 

expression for the pelican's strategy as it moves towards its 

prey is provided in equation (10). 

𝑀𝑝,𝑞
𝐴1 = {

𝑀𝑝,𝑞 + 𝑟𝑎𝑛𝑑 ∙ (𝐴𝑞 − 𝐺 ∙ 𝑀𝑝,𝑞), 𝐸𝑎 < 𝐸𝑝

𝑀𝑝,𝑞 + 𝑟𝑎𝑛𝑑 ∙ (𝑀𝑝,𝑞 − 𝐴𝑞),      𝑒𝑙𝑠𝑒
       (10) 

This equation defines 𝑀𝑝,𝑞
𝐴1 , indicating the updated status 

of the pth pelican in the qth dimension after phase 1. The 

variable G takes on a random value of either 1 or 2. 𝐴𝑞 

represents the prey's position in the qth dimension, while 𝐸𝑎 

denotes its objective function value. Hence, parameter G 

significantly influences PO's exploration by accurately 

selecting features. This behavior, reminiscent of pelicans 

during hunting, is mathematically simulated in the equation 

(11). 

  𝑀𝑝,𝑞
𝐴2 = 𝑀𝑝,𝑞 + 𝐷 ∙ (1 −

𝑡

𝑇
) ∙ (2 ∙ 𝑟𝑎𝑛𝑑 − 1) ∙ 𝑀𝑝,𝑞      (11) 

In this equation, 𝑀𝑝,𝑞
𝐴2  represents the updated state of the 

pth pelican in the qth dimension after the time frame. D(1-

t/T) gives the neighbourhood radius of 𝑀𝑝,𝑞 with D fixed at 

0.2. The coefficient D(1-t/T) is pivotal for PO's 

exploitability, as it brings the algorithm closer to the global 

optimal solution. Initially, during the early iterations, this 

coefficient has a larger value, resulting in a broader 
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exploration around each member. However, as the algorithm 

progresses through subsequent phases, the pelican positions 

are adjusted, and the most promising features are identified. 

Eventually, the algorithm stops and produces the best 

features when the maximum number of iterations is reached 

or the convergence condition is satisfied. The algorithm 1 

shows the steps for HK-POA which is given below. 

Initialize Kookburra population 𝑋𝑘 and pelican population 

𝑋𝑝. 

Initialize iteration count 𝑡 = 0. 

Exploration Phase of Kookaburra 

 For each Kookaburra individual 𝑥𝑘𝑖  in 𝑋𝑘: 

  Update the position using: 

  𝑥𝑘𝑖 = 𝑥𝑘𝑖 + 𝛼. 𝑟𝑎𝑛𝑑(0,1). 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 

Exploitation phase of Pelican 

 For each Pelican individual 𝑥𝑝𝑖 in 𝑋𝑝: 

  Update the position using: 

  𝑥𝑝𝑖 = 𝑥𝑝𝑖 + 𝛽. 𝑟𝑎𝑛𝑑(0,1). ∇ 𝑓(𝑥𝑝𝑖) 

Combine Kookaburra and Pelican populations: 𝑋 = 𝑋𝑘 ∪
𝑋𝑝 

Select individuals for the next generation based on fitness. 

Increment t. 

If termination conditions are not met stop; 

Otherwise, go to step 3. 

 

4. RESULTS AND DISCUSSION 

In this section, the simulation setup and outcomes of the 

proposed DELICIOUS method employing various validation 

and assessment studies are discussed. In the experimental 

evaluation of the proposed DELICIOUS method, classes 

from the extended CloudSim toolkit are utilized for 

modelling and simulation of cloud systems. CloudSim 

Simulator allows to set up a virtualized environment with on-

demand resource provisioning. Furthermore, cloud services 

and related applications may be more easily simulated, 

modelled, and tested. A few key factors taken into account 

are throughput, execution time, latency, waiting time, 

computational complexity, and computational cost which is 

then compared to the number of available tasks. 

4.1. Performance Evaluation 

The efficiency of the proposed DELICIOUS approach 

was assessed using critical performance indicators for the 

first time, including throughput, latency, execution time, 

delay, computational complexity, and computation time and 

fundamental methods of implementation, such as RATS-

HM, GRAF, and QoDA-LB. Figure 2 displays the 

throughput attained for multiple tasks using the proposed 

DELICIOUS approach along with comparison 

methodologies. The proposed DELICIOUS design, performs 

better than the other three systems when processing 

workloads out of 500 tasks, with throughputs of 865 Kbps, 

943.4 Kbps, and 984.6 Kbps respectively. 

 

Figure 2. Throughput Vs Number of Tasks 

These outcomes shows that the proposed DELICIOUS 

approach is effective and that it is feasible to take advantage 

of integrated HK-POA benefits. Through a comprehensive 

examination of numerous factors, this method delivers 

optimal throughput regardless of the workload entering the 

cloud environment by allocating incoming tasks to the right 

VM’s. 

 

Figure 3. Latency Vs Number of Tasks 

Figure 3 illustrates the delay that the proposed 

DELICIOUS approach, as well as the previously stated 

GRAF, QoDA-LB, and RATS-HM techniques, encountered 

for varying numbers of tasks. The performance of the 

proposed DELICIOUS method is superior to the methods 

discussed, as shown by the latency trends for varying task 

counts.  

 

Figure 4. Execution Time Vs Number of Tasks 
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This decrease in latency is credited to the scheme's 

adeptness and consistency in dynamically applying diverse 

load balancing constraints during task scheduling. Moreover, 

it excels in effectively allocating tasks to suitable VMs, thus 

averting situations of under-utilization or over-utilization in 

the cloud environment. 

Furthermore, Figure 4 and Figure 5 displays the 

proposed DELICIOUS method for various workloads 

together with the latency and execution durations for the 

evaluated GRAF, QoDA-LB, and RATS-HM approaches. 

Particularly, the proposed DELICIOUS scheme exhibits 

reduced execution time and waiting time relative to the 

baseline approaches under varying task. 

 

Figure 5. Waiting Time Vs Number of Tasks 

By integrating the multi-dimensional HK-POA, the 

scheme explores essential factors for assigning incoming 

tasks to suitable VMs within the cloud environment. This 

dynamic exploration facilitated by the proposed 

DELICIOUS scheme effectively decreases task waiting 

times by dynamically adjusting the load balancing rate to 

meet the required criteria. 

 

Figure 6. Computational Complexity Vs Number of Tasks 

Figures 6 and 7 display the computational complexity, 

cost, and techniques of comparison of the suggested system 

for various activities. The efficacy of the proposed 

DELICIOUS system is assessed in this part. The basic load 

balancing techniques, such as the GRAF, QoDA-LB, and 

RATS-HM schemes, concentrate on task efficiency, 

computing complexity, and cost. 

By including constraints and multi-objective 

optimization elements into the load balancing process, the 

proposed DELICIOUS strategy combines processing 

complexity and cost, independent of the number of 

operations. Moreover, it includes diverse load balancing 

parameters to dynamically assign tasks to different VMs 

throughout the allocation process. 

 

Figure 7. Computational Cost Vs Number of Tasks 

5. CONCLUSION 

This paper proposed a novel Dynamic Efficient Load 

Balancing in Cloud using kookaburra Infused pelican 

Optimization for virtUal Server (DELICIOUS) is developed 

for Effective load balancing system in cloud computing. The 

proposed DELICIOUS technique is validated by using the 

Cloud Simulator (CloudSim) to providing consumers with 

the best services for applications using cloud computing. 

Furthermore, the performance of the proposed DELICIOUS 

technique is evaluated in terms of the parameters such as 

throughput, execution time, latency, waiting time, 

computational complexity, and computational cost. The 

DELICIOUS technique achieves a better throughput of 

1206.6 Kbps whereas, the GRAF, QoDA-LB, and RATS-

HM technique attains 865 Kbps, 943.4 Kbps, and 984.6 Kbps 

respectively.  
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