
International Journal of Data Science and Artificial Intelligence (IJDSAI)
Volume 02, Issue 04, July - August (2024)

ISSN: 2584-1041 ©KITS PRESS Publications

RESEARCH ARTICLE

DYNAMIC LOAD BALANCING IN CLOUD

COMPUTING USING HYBRID

KOOKABURRA-PELICAN OPTIMIZATION

ALGORITHMS
G. Saranya 1, *, G. Belshia Jebamalar 2 and Chukka Santhaiah 3

1 Department of Computer Science and Engineering, S.A. Engineering College, Poonamallee, Thiruverkadu, Tamil Nadu

600077 India.
2 Department of Computer Science and Engineering, SA Engineering College, Poonamallee, Thiruverkadu, Tamil Nadu

600077 India.
3 Department of Computer Science and Engineering, Sri Venkateswara College of Engineering, Tripati, Tamil Nadu India.

*Corresponding e-mail: saran03ganesan@gmail.com

Abstract – Cloud Computing (CC) technology facilitates

virtualized computer resources to users via service providers.

Load balancing assumes a critical role in distributing dynamic

workloads across cloud systems, ensuring equitable resource

allocation without overwhelming or underutilizing virtual

machines (VMs). However, uneven workload distribution poses

a significant challenge in cloud data centers, hindering efficient

resource utilization. To address these issues, this paper

proposes a novel Dynamic Efficient Load Balancing in Cloud

using kookaburra Infused pelican Optimization for virtUal

Server (DELICIOUS) is developed for effective load balancing

process in cloud computing environment. The Hybrid

Kookaburra-Pelican Optimization Algorithm (HK-POA) is

implemented for offloading decisions which optimizes resource

allocation and enhances user experiences. The evaluation of the

performance of the DELICIOUS framework involves a

thorough assessment that includes essential metrics such as

throughput, execution time, latency, waiting time,

computational complexity, and computational cost. The

simulation experiments of the proposed DELICIOUS

framework are conducted using CloudSim and achieves a better

throughput of 1206.6 Kbps whereas, the GRAF, QoDA-LB, and

RATS-HM technique attains 865 Kbps, 943.4 Kbps, and 984.6

Kbps respectively for intelligent load balancing in cloud

networks.

Keywords – Load Balancing, Cloud Computing, Kookaburra

Optimization Algorithm, Pelican Optimization Algorithm.

1. INTRODUCTION

Cloud Computing enables the efficient utilization of

computing resources through its dynamic service model,

requiring adaptive resource allocation and scalability to

ensure Quality-of-Service (QoS) while minimizing resource

usage [1, 2]. These resources cover computing power,

storage, databases, networking, planning, resource finding,

security, and privacy. Load balancing involves distributing

workload effectively across multiple computing platforms,

aiming to optimize system output, resource utilization, and

VM performance metrics. Various load-balancing algorithms

are employed by the cloud system to achieve resource

efficiency [3, 4].

Load balancing algorithms varies depending on the

system's condition which distinguishes static and dynamic

methods. Static algorithms rely on heuristics and are

contingent on the current system state, while dynamic

algorithms utilize metaheuristics and operate independently

of specific conditions [5, 6]. Dynamic algorithms are

particularly effective in environments where the volume of

requests and VMs varies significantly. These algorithms

perform better in redistributing workloads among VMs to

rectify load imbalances [7, 8].

Load refers to the tasks allocated to VMs, which may

lead to imbalances due to underutilization or overutilization.

Overutilization happens when tasks allocated to a VM

exceed its capacity threshold, whereas underutilization

occurs when a VM can handle more tasks than it currently

hosts [9-10]. Therefore, load balancing is crucial for

maintaining equilibrium among cloud resources. Load

balancing and task scheduling are both required to

accomplish this balance and ensure equitable allocation

among virtual machines [11].

The load balancing and task scheduling is essential for

meeting QoS requirements which falls into the category of

NP-hard problems due to the multitude of scheduling and

balancing parameters. When a single VM becomes

overloaded while numerous empty VMs exist within the

cloud network, redistributing workloads from overloaded to

underutilized VMs is advantageous [12]. In cloud

environments, it might be challenging to calculate all

possible mappings of task resources, and even more to

identify optimal mapping. Therefore, an effective task

mailto:1corresponding.author@mailserver.com

G. Saranya et al. / IJDSAI, 02(04), 98-104, 2024

99

distribution method is needed to schedule tasks in a way that

prevents VMs from becoming excessively overloaded or

underloaded [13]. The major contributions of the proposed

DELICIOUS approach are as follows,

• This research proposes a novel, Dynamic Efficient

Load Balancing in Cloud using kookaburra Infused

pelican Optimization for virtUal Server (DELICIOUS)

framework is to provide high quality services to

customers in cloud computing applications.

• Initially, a task scheduling process is implemented to

assign deadlines and execution times to tasks, while a

load balancing process ensures workload migration in

case of VM violations, due to that maintains load

balance in the cloud environment.

• The performance evaluation of the DELICIOUS

framework encompasses a comprehensive assessment,

focusing on key metrics such as throughput, execution

time, latency, waiting time, computational complexity,

and computational cost.

The remainder of the study is organized as follows.

Section II contains related papers with updates on recent

research and descriptions of load balancing and task

scheduling. Additional details about the proposed framework

are provided in Section III. Section IV presents the

experimental results of the proposed framework. The

conclusions and further research are presented in Section V.

2. LITERATURE SURVEY

This section contains a summary of the literature has

been discussed in this research. The concept of load

balancing is initially discussed, along with its established

model, metrics, and algorithms. Subsequently, it discusses

recent literature on Load Balancing, presenting suggested

algorithms by researchers and comparing their proposals

with existing algorithms in the field.

In 2020, Devaraj, A.F.S., et al. [14] suggested a load

balancing method with Firefly and Advanced Multi-

Objective Particle Ensemble Optimization (FIMPSO). The

simulation results revealed that the FIMPSO algorithm

achieved the most efficient outcomes, with a shortest

common response time of 13.58ms, surpassing all other

comparable techniques. It provides the highest CPU

utilization of 98%, memory utilization of 93%, dependability

rating of 67%, throughput of 72%, and maximum make span

of 148% respectively.

In 2021, Park, J., et al. [15] suggested GRAF, a proactive

resource allocation technique utilizing graph neural networks

to minimize overall CPU usage while assigning latency

Service Level Objectives (SLOs). In comparison to

autoscaling approaches, GRAF can achieve SLO latency

with up to 19% of CPU consumption, according to

experiments conducted using a number of publicly available

benchmarks. Additionally, GRAF efficiently handles traffic

spikes with 36% fewer resources than Kubernetes

autoscaling and achieves faster latency convergence, up to

2.6 times respectively.

In 2022, Latchoumi, T.P., and Parthiban, L. [16]

suggested to provide efficient resource scheduling in Cloud

Computing (CC) scenarios with an essentially Quasi

Opposite Dragonfly Algorithm technique for Load Balancing

(QODA-LB). QODA-LB aimed to reduce task execution

costs and times while ensuring an even distribution of

workload across all VMs in the CC system. Simulation

results demonstrated superior performance over leading

methods, achieving optimal load balancing efficiency.

In 2022, Bal, P.K., et al. [17] suggested RATS-HM, a

hybrid machine learning approach that blends safe resource

allocation in a cloud computing context with effective task

scheduling. Through simulations across different setups,

RATS-HM shows the effectiveness which is compared to

other state-of-the-art methods.

In 2023, Al Reshan, M.S., et al. [18] suggested an

approach to load balancing in cloud computing which is fast

and globally optimal. The suggested approach fused Gray

Wolf Optimization with Particle Swarm Optimization

(GWO-PSO) to achieve the advantages of both global

optimization and quick convergence. By utilizing the GWO-

PSO algorithm, this technique improves PSO convergence to

97.253% while reducing 12% on overall response times.

In 2023, Ramya, K., and Ayothi, S., [19] suggested

Hybrid Whale and Dingo Optimization Algorithm

(HDWOA-LBM) approach for cloud computing

environments. This approach imitates a dingo's hunting

behavior, optimizes the assignment of tasks to the

appropriate virtual computer. The simulation experiments of

HDWOA-LBM achieve a significant improvement in

throughput of 21.28%, reliability of 25.42%, make span of

22.98%, and resource allocation of 20.86% for intelligent

load balancing.

In 2024, Khaleel, M.I., [20] suggested RASA and

dynamic task scheduling approach to balance the load in a

cloud computing system. The RASA approach categorizes

the tasks based on critical parameters using a task

classification model. This approach resulted in reductions in

latency overhead of 9%, processing time of 14%, workload

imbalance of 15%, energy consumption of 19%, and idle

time of 26%, along with improvements in resource

availability of 22%, resource efficiency of 27%, and

throughput of 32% respectively.

In order to address the above issues with cloud

platforms, this research offers an agile task scheduling

strategy that provides priority to crucial task characteristics

including deadlines and durations which significantly affects

the Quality of Service (QoS). Through meticulous

scheduling and adherence to VM constraints, the algorithm

ensures a well-balanced workload distribution across the

cloud infrastructure.

3. DYNAMIC EFFICIENT LOAD BALANCING IN

CLOUD USING KOOKABURRA INFUSED

PELICAN OPTIMIZATION FOR VIRTUAL

SERVER

In this section, a novel Dynamic Efficient Load

Balancing in Cloud using Kookaburra-Infused Pelican

G. Saranya et al. / IJDSAI, 02(04), 98-104, 2024

100

Optimization for Virtual Server (DELICIOUS) framework is

proposed to deliver high-quality services to clients in Cloud

Computing applications. The proposed DELICIOUS

approach performs two main processes such as the task

scheduling process, which is responsible for assigning

deadlines and completion times to tasks, and the load

balancing process, which manages the migration of

workloads within Virtual Machine (VM) breach case to

maintain load balance in cloud environment. Initially, the

tasks requested by the user will be fed into the data center

controller. These tasks are then passed to the load balancer,

which uses a learning agent based on the Kookaburra-Pelican

Hybrid Optimization Algorithm (HK-POA) to determine

appropriate values and allocate tasks for machines in virtual

environments suitable for cloud computing environments.

The VM Manager then schedules tasks on the VM based on

workload conditions such as underload and overload

identified in the environment, using the migration process.

The general block diagram of the proposed DELICIOUS

framework is illustrated in Figure 1.

Figure 1. Proposed DELICIOUS Framework

3.1. Task classification

In task classification, algorithm 1 describes the process

of adding tasks to the queue, with the primary determining

factor being the task deadline. The underlying cloud

hardware can accommodate a predetermined number (v) of

virtual machines (VMs) to host tasks that users submit to the

cloud scheduler. Dispatching these tasks presents challenges

due to parameters such as 𝜏𝑐𝑝𝑢, 𝜏𝑚𝑒𝑚, 𝜏𝑒𝑒𝑑, 𝜏𝑑𝑒𝑑 , and

𝜏𝑖𝑐 characterizing each task, alongside each VM being

associated with ν𝑐𝑝𝑢 and ν𝑚𝑒𝑚, denoting CPU and memory

resources, respectively. Each task demands a portion of the

VMs' finite resources, contingent upon its size and duration.

In response to this requirement, incoming workloads are

classified into three distinct queues which is ϱ𝑐𝑝𝑢, ϱ𝑚𝑒𝑚, and

ϱ𝑖𝑜. For example, ϱ𝑐𝑝𝑢 encompasses tasks necessitating

intensive CPU utilization, ϱ𝑚𝑒𝑚 comprises those requiring

substantial memory utilization, and ϱ𝑖𝑜 contains tasks with

prolonged durations.

Based on its parameters, each tasks speed is determined

using R=(τ⁄S). The task category with the greatest rate is

chosen as τC=max [R𝑐𝑝𝑢, R𝑚𝑒𝑚, R𝑖𝑜]. After being accepted,

tasks are initiated and categorized into three groups which is

τC𝑚𝑒𝑚, τC𝑐𝑝𝑢, and τC𝑖𝑜.. Then, the outer loop makes sure

that each authorized task is finished on schedule. The

execution time of each task is calculated, ensuring adherence

to its Service Level Agreement (SLA), including its deadline.

A queue, ϱ𝑞𝑢𝑒𝑢𝑒, is employed to organize all accepted tasks

meeting their deadlines. The loop verifies that tasks are

arranged suitably according to their requirements by

continuously assessing the memory, CPU, and I/O speeds of

each task. Tasks demanding significant CPU utilization are

classified first, followed by those necessitating higher

memory utilization, and finally, those requiring longer

durations are separated.

3.2. Load Balancing Via Hybrid K-POA

This section commences by elucidating the inspiration

and theoretical foundation behind the proposed Hybrid

Kookaburra-Pelican Optimization Algorithm (HK-POA),

followed by a mathematical modeling of its implementation

steps for solving optimization problems. Kookaburra

optimization is an iterative method for solving problems in

the realm of problem solving that uses stochastic search to

produce effective solutions to optimization problems. Based

on the collective population matrix of Kookaburras, the

Kookaburra Optimization Algorithm (KOA) is represented

mathematically by equation (1). According to equation (2),

kookaburras' starting locations during KOA deployment are

chosen at random.

G. Saranya et al. / IJDSAI, 02(04), 98-104, 2024

101

𝑋 =

[

X1

.

.

.
Xi

.

.

.
XN]

𝑁×𝑚

=

[

x1,1 ⋯ x1,d

⋯ x1,m

⋮ ⋱ ⋮ ⋱ ⋮
xi,1

⋮
xN,1

…
⋱
…

xi,d
… xi,m

⋮
xN,d

⋱
⋯

⋮
xN,m]

𝑵×𝒎

 (1)

 xi,d = 𝑙𝑏𝑑 + 𝑟(𝑢𝑏𝑑 − 𝑙𝑏𝑑) (2)

The general KOA matrix, represented by X includes the

search space. N is the total number of kookaburras, with m

optimal variables. A random number inside the interval [0,

1] is shown, and the variables 𝑢𝑏𝑑 and 𝑙𝑏𝑑, respectively,

indicate the lower and upper bounds of the ith decision

variable through the variable r. Equation (3) demonstrates

that a vector can be used to describe the collection of

objective function values that were assessed for the task.

𝐹 =

[

F1

.

.

.
Fi

.

.

.
FN]

𝑁×1

=

[

𝐹(𝑋1)

.

.

.
𝐹(𝑋𝑖)

.

.

.
𝐹(𝑋𝑁)]

𝑁×1

 (3)

The vector F, where Fi identifies the objective function

evaluated corresponding to the ith kookaburra, specifies the

collection of objective functions assessed in this scenario.

The prey set that each kookaburra has access to is then

ascertained by comparing the values of the objective

functions, as indicated by equation (4).

𝐶𝑃𝑖 = {𝑋𝑘: 𝐹𝑘 < 𝐹𝑖𝑎𝑛𝑑 𝑘 ≠ 𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑖 =
1, 2, … … ,𝑁 𝑎𝑛𝑑 𝑘 ∈ {1, 2, … . . , 𝑁} (4)

In this case, the set of possible prey that the ith

kookaburra can approach is shown by 𝐶𝑃𝑖. 𝐹𝑘 represents the

objective function value in this instance, and 𝑋𝑘 represents

the kookaburra with an objective function value greater than

the ith kookaburra. Using equation (5), which mimics the

kookaburra's path toward the prey while hunting, the bird's

new location is ascertained. The kookaburra in concern will

relocate to this new site if the objective function's value there

rises, as demonstrated by equation (6).

𝑥𝑖,𝑑
𝑝1

= 𝑥𝑖,𝑑 + 𝑟 (𝑆𝐶𝑃𝑖,𝑑 − 𝐼. 𝑥𝑖,𝑑), 𝑖 =

1, 2, … … ,𝑁, 𝑎𝑛𝑑 𝑑 = 1, 2, …… . ,𝑚 (5)

𝑋𝑖 = {
𝑥𝑖

𝑝1
, 𝐹𝑖

𝑝1
< 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
 (6)

𝐹𝑖
𝑝1

 represents the functional objective value, 𝑥𝑖,𝑑
𝑝1

represents the new recommended position of the ith

kookaburra based on the first step of the KOA and 𝑥𝑖,𝑑
𝑝1

represents the kookaburra's dimension d. Furthermore, r is a

random number selected from 0 to 1 based on a normal

distribution. The 𝑆𝐶𝑃𝑖,𝑑 represents the d-th dimension of the

prey chosen for the ith kookaburra, where i is a randomly

chosen number from the set {1, 2}. N stands for the total

number of kookaburras, and m for the number of decision

variables.

The KOA technique imitates the behaviour of

kookaburras around hunting sites by utilizing equation (7) to

determine an arbitrary location. Equation (8) indicates that

the previous position will be replaced if the new location for

each kookaburra raises the value of the objective function.

𝑥𝑖,𝑑
𝑝2

= 𝑥𝑖,𝑑 + (1 − 2𝑟).
(𝑢𝑏𝑑−𝑙𝑏𝑑)

𝑡
, 𝑖 = 1, 2, … … ,𝑁, 𝑑 =

1, 2, … … ,𝑚, 𝑎𝑛𝑑 𝑡 = 1, 2, …… , 𝑇 (7)

𝑋𝑖 = {
𝑥𝑖

𝑝2
, 𝐹𝑖

𝑝2
< 𝐹𝑖

𝑋𝑖 , 𝑒𝑙𝑠𝑒
 (8)

The function's target value in this instance is 𝐹𝑖
𝑝2

, the dth

dimension is represented by 𝑥𝑖
𝑝2

, and the ith kookaburra's

proposed new location is 𝑥𝑖
𝑝2

, which is based on the second

phase of KOA. Furthermore, T denotes the algorithm's

maximum iteration count, and t denotes the algorithm's

iteration counter.

The proposed PO algorithm is a population-based

approach where pelicans constitute the members of this

population. Initially, the extracted features are randomly

initialized within the lower and upper bounds of the problem

using Equation (9).

𝑀𝑝,𝑞 = ℎ𝑞 + 𝑟𝑎𝑛𝑑 ∙ (𝑘𝑞 − ℎ𝑞), 𝑝 = 1, 2, … , 𝑋, 𝑞 = 1, 2, …𝑦

(9)

This equation gives the value of the variable qth, which

is decided by the candidate solution pth, represented by 𝑀𝑝,𝑞 .

The lower and upper bounds, represented by ℎ𝑞 and 𝑘𝑞,

respectively, express the total population. The mathematical

expression for the pelican's strategy as it moves towards its

prey is provided in equation (10).

𝑀𝑝,𝑞
𝐴1 = {

𝑀𝑝,𝑞 + 𝑟𝑎𝑛𝑑 ∙ (𝐴𝑞 − 𝐺 ∙ 𝑀𝑝,𝑞), 𝐸𝑎 < 𝐸𝑝

𝑀𝑝,𝑞 + 𝑟𝑎𝑛𝑑 ∙ (𝑀𝑝,𝑞 − 𝐴𝑞), 𝑒𝑙𝑠𝑒
 (10)

This equation defines 𝑀𝑝,𝑞
𝐴1 , indicating the updated status

of the pth pelican in the qth dimension after phase 1. The

variable G takes on a random value of either 1 or 2. 𝐴𝑞

represents the prey's position in the qth dimension, while 𝐸𝑎

denotes its objective function value. Hence, parameter G

significantly influences PO's exploration by accurately

selecting features. This behavior, reminiscent of pelicans

during hunting, is mathematically simulated in the equation

(11).

 𝑀𝑝,𝑞
𝐴2 = 𝑀𝑝,𝑞 + 𝐷 ∙ (1 −

𝑡

𝑇
) ∙ (2 ∙ 𝑟𝑎𝑛𝑑 − 1) ∙ 𝑀𝑝,𝑞 (11)

In this equation, 𝑀𝑝,𝑞
𝐴2 represents the updated state of the

pth pelican in the qth dimension after the time frame. D(1-

t/T) gives the neighbourhood radius of 𝑀𝑝,𝑞 with D fixed at

0.2. The coefficient D(1-t/T) is pivotal for PO's

exploitability, as it brings the algorithm closer to the global

optimal solution. Initially, during the early iterations, this

coefficient has a larger value, resulting in a broader

G. Saranya et al. / IJDSAI, 02(04), 98-104, 2024

102

exploration around each member. However, as the algorithm

progresses through subsequent phases, the pelican positions

are adjusted, and the most promising features are identified.

Eventually, the algorithm stops and produces the best

features when the maximum number of iterations is reached

or the convergence condition is satisfied. The algorithm 1

shows the steps for HK-POA which is given below.

Initialize Kookburra population 𝑋𝑘 and pelican population

𝑋𝑝.

Initialize iteration count 𝑡 = 0.

Exploration Phase of Kookaburra

 For each Kookaburra individual 𝑥𝑘𝑖 in 𝑋𝑘:

 Update the position using:

 𝑥𝑘𝑖 = 𝑥𝑘𝑖 + 𝛼. 𝑟𝑎𝑛𝑑(0,1). 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒

Exploitation phase of Pelican

 For each Pelican individual 𝑥𝑝𝑖 in 𝑋𝑝:

 Update the position using:

 𝑥𝑝𝑖 = 𝑥𝑝𝑖 + 𝛽. 𝑟𝑎𝑛𝑑(0,1). ∇ 𝑓(𝑥𝑝𝑖)

Combine Kookaburra and Pelican populations: 𝑋 = 𝑋𝑘 ∪
𝑋𝑝

Select individuals for the next generation based on fitness.

Increment t.

If termination conditions are not met stop;

Otherwise, go to step 3.

4. RESULTS AND DISCUSSION

In this section, the simulation setup and outcomes of the

proposed DELICIOUS method employing various validation

and assessment studies are discussed. In the experimental

evaluation of the proposed DELICIOUS method, classes

from the extended CloudSim toolkit are utilized for

modelling and simulation of cloud systems. CloudSim

Simulator allows to set up a virtualized environment with on-

demand resource provisioning. Furthermore, cloud services

and related applications may be more easily simulated,

modelled, and tested. A few key factors taken into account

are throughput, execution time, latency, waiting time,

computational complexity, and computational cost which is

then compared to the number of available tasks.

4.1. Performance Evaluation

The efficiency of the proposed DELICIOUS approach

was assessed using critical performance indicators for the

first time, including throughput, latency, execution time,

delay, computational complexity, and computation time and

fundamental methods of implementation, such as RATS-

HM, GRAF, and QoDA-LB. Figure 2 displays the

throughput attained for multiple tasks using the proposed

DELICIOUS approach along with comparison

methodologies. The proposed DELICIOUS design, performs

better than the other three systems when processing

workloads out of 500 tasks, with throughputs of 865 Kbps,

943.4 Kbps, and 984.6 Kbps respectively.

Figure 2. Throughput Vs Number of Tasks

These outcomes shows that the proposed DELICIOUS

approach is effective and that it is feasible to take advantage

of integrated HK-POA benefits. Through a comprehensive

examination of numerous factors, this method delivers

optimal throughput regardless of the workload entering the

cloud environment by allocating incoming tasks to the right

VM’s.

Figure 3. Latency Vs Number of Tasks

Figure 3 illustrates the delay that the proposed

DELICIOUS approach, as well as the previously stated

GRAF, QoDA-LB, and RATS-HM techniques, encountered

for varying numbers of tasks. The performance of the

proposed DELICIOUS method is superior to the methods

discussed, as shown by the latency trends for varying task

counts.

Figure 4. Execution Time Vs Number of Tasks

G. Saranya et al. / IJDSAI, 02(04), 98-104, 2024

103

This decrease in latency is credited to the scheme's

adeptness and consistency in dynamically applying diverse

load balancing constraints during task scheduling. Moreover,

it excels in effectively allocating tasks to suitable VMs, thus

averting situations of under-utilization or over-utilization in

the cloud environment.

Furthermore, Figure 4 and Figure 5 displays the

proposed DELICIOUS method for various workloads

together with the latency and execution durations for the

evaluated GRAF, QoDA-LB, and RATS-HM approaches.

Particularly, the proposed DELICIOUS scheme exhibits

reduced execution time and waiting time relative to the

baseline approaches under varying task.

Figure 5. Waiting Time Vs Number of Tasks

By integrating the multi-dimensional HK-POA, the

scheme explores essential factors for assigning incoming

tasks to suitable VMs within the cloud environment. This

dynamic exploration facilitated by the proposed

DELICIOUS scheme effectively decreases task waiting

times by dynamically adjusting the load balancing rate to

meet the required criteria.

Figure 6. Computational Complexity Vs Number of Tasks

Figures 6 and 7 display the computational complexity,

cost, and techniques of comparison of the suggested system

for various activities. The efficacy of the proposed

DELICIOUS system is assessed in this part. The basic load

balancing techniques, such as the GRAF, QoDA-LB, and

RATS-HM schemes, concentrate on task efficiency,

computing complexity, and cost.

By including constraints and multi-objective

optimization elements into the load balancing process, the

proposed DELICIOUS strategy combines processing

complexity and cost, independent of the number of

operations. Moreover, it includes diverse load balancing

parameters to dynamically assign tasks to different VMs

throughout the allocation process.

Figure 7. Computational Cost Vs Number of Tasks

5. CONCLUSION

This paper proposed a novel Dynamic Efficient Load

Balancing in Cloud using kookaburra Infused pelican

Optimization for virtUal Server (DELICIOUS) is developed

for Effective load balancing system in cloud computing. The

proposed DELICIOUS technique is validated by using the

Cloud Simulator (CloudSim) to providing consumers with

the best services for applications using cloud computing.

Furthermore, the performance of the proposed DELICIOUS

technique is evaluated in terms of the parameters such as

throughput, execution time, latency, waiting time,

computational complexity, and computational cost. The

DELICIOUS technique achieves a better throughput of

1206.6 Kbps whereas, the GRAF, QoDA-LB, and RATS-

HM technique attains 865 Kbps, 943.4 Kbps, and 984.6 Kbps

respectively.

CONFLICTS OF INTEREST

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

FUNDING STATEMENT

Not applicable.

ACKNOWLEDGEMENTS

The author would like to express his heartfelt gratitude

to the supervisor for his guidance and unwavering support

during this research for his guidance and support.

REFERENCES

[1] F. Alqahtani, M. Amoon, and A.A. Nasr, “Reliable scheduling

and load balancing for requests in cloud-fog computing”, Peer-

to-Peer Networking and Applications, vol. 14, no. 4, pp.1905-

1916, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[2] K. Balaji, P.S. Kiran, and M.S., Kumar, “An energy efficient

load balancing on cloud computing using adaptive cat swarm

optimization”, Materials Today: Proceedings, 2021.

[CrossRef] [Google Scholar] [Publisher Link]

[3] F.M. Talaat, M.S. Saraya, A.I. Saleh, H.A. Ali, and S.H. Ali,

“A load balancing and optimization strategy (LBOS) using

reinforcement learning in fog computing environment”,

Journal of Ambient Intelligence and Humanized Computing,

https://doi.org/10.1007/s12083-021-01125-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09F.+Alqahtani%2C+M.+Amoon%2C+and+A.A.+Nasr%2C+%E2%80%9CReliable+scheduling+and+load+balancing+for+requests+in+cloud-fog+computing%E2%80%9D%2C+Peer-to-Peer+Networking+and+Applications%2C+vol.+14%2C+no.+4%2C+pp.1905-1916%2C+2021&btnG=
https://link.springer.com/article/10.1007/s12083-021-01125-2
https://doi.org/10.1016/j.matpr.2020.11.106
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B2%5D%09K.+Balaji%2C+P.S.+Kiran%2C+and+M.S.%2C+Kumar%2C+%E2%80%9CAn+energy+efficient+load+balancing+on+cloud+computing+using+adaptive+cat+swarm+optimization%E2%80%9D%2C+Materials+Today%3A+Proceedings%2C+2021&btnG=
https://www.sciencedirect.com/science/article/pii/S2214785320387125

G. Saranya et al. / IJDSAI, 02(04), 98-104, 2024

104

vol. 11, no. 11, pp.4951-4966, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[4] S. Sagar, M. Ahmed, and M.Y. Husain, “Fuzzy Randomized

Load Balancing for Cloud Computing”, In International

Conference on P2P, Parallel, Grid, Cloud and Internet

Computing, pp. 18-29, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[5] N. Arivazhagan, K. Somasundaram, D. Vijendra Babu, M.

Gomathy Nayagam, R.M. Bommi, G.B. Mohammad, P.R.

Kumar, Y. Natarajan, V.J. Arulkarthick, V.K.

Shanmuganathan, and K. Srihari, “Cloud-internet of health

things (IOHT) task scheduling using hybrid moth flame

optimization with deep neural network algorithm for E

healthcare systems”, Scientific Programming, 2022, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[6] A. Asghari, and M.K. Sohrabi, “Combined use of coral reefs

optimization and reinforcement learning for improving

resource utilization and load balancing in cloud

environments”, Computing, vol. 103, no. 7, pp.1545-1567,

2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] H. Mahmoud, M. Thabet, M.H. Khafagy, and F.A. Omara, “An

efficient load balancing technique for task scheduling in

heterogeneous cloud environment”, Cluster Computing, vol.

24, no. 4, pp. 3405-3419, 2021. [CrossRef] [Google Scholar]

[Publisher Link]

[8] Z. Miao, P. Yong, Y. Mei, Y. Quanjun, and X. Xu, “A discrete

PSO-based static load balancing algorithm for distributed

simulations in a cloud environment”, Future Generation

Computer Systems, vol. 115, pp.497-516, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[9] J.R. Adaikalaraj, “Load Balancing In Cloud Computing

Environment Using Quasi Oppositional Dragonfly

Algorithm”, Turkish Journal of Computer and Mathematics

Education (TURCOMAT), vol. 12, no. 10, pp. 3256-3273,

2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] S. Dhahbi, M. Berrima, and F.A. Al-Yarimi, “Load balancing

in cloud computing using worst-fit bin-stretching”, Cluster

Computing, vol. 24, no. 4, pp. 2867-2881, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[11] S. Afzal, and G. Kavitha, “Load balancing in cloud

computing–A hierarchical taxonomical classification”,

Journal of Cloud Computing, vol. 8, no. 1, pp. 22, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[12] U. K. Jena, P. K. Das, and M. R. Kabat, “Hybridization of

meta-heuristic algorithm for load balancing in cloud

computing environment”, Journal of King Saud

UniversityComputer and Information Sciences, vol. 34, no. 6,

pp.2332- 2342, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

[13] E. H. Houssein, A. G. Gad, Y. M. Wazery and P. N. Suganthan,

“Task scheduling in cloud computing based on meta-

heuristics: review, taxonomy, open challenges, and future

trends”, Swarm and Evolutionary Computation, vol. 62,

pp.100841, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[14] A.F.S. Devaraj, M. Elhoseny, S. Dhanasekaran, E.L. Lydia,

and K. Shankar, “Hybridization of firefly and improved multi-

objective particle swarm optimization algorithm for energy

efficient load balancing in cloud computing environments”,

Journal of Parallel and Distributed Computing, vol. 142,

pp.36-45, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[15] J. Park, B. Choi, C. Lee, and D. Han, GRAF: A graph neural

network based proactive resource allocation framework for

SLO-oriented microservices”, In Proceedings of the 17th

International Conference on emerging Networking

Experiments and Technologies, pp. 154-167, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[16] T.P. Latchoumi, and L. Parthiban, “Quasi oppositional

dragonfly algorithm for load balancing in cloud computing

environment”, Wireless Personal Communications, vol. 122,

no. 3, pp.2639-2656, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[17] P.K. Bal, S.K. Mohapatra, T.K. Das, K. Srinivasan, and Y.C.

Hu, “A joint resource allocation, security with efficient task

scheduling in cloud computing using hybrid machine learning

techniques”, Sensors, vol. 22, no. 3, pp.1242, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[18] M.S. Al Reshan, D. Syed, N. Islam, A. Shaikh, M. Hamdi,

M.A. Elmagzoub, G. Muhammad, and K.H. Talpur, “A fast

converging and globally optimized approach for load

balancing in cloud computing”, IEEE Access, vol. 11,

pp.11390-11404, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[19] K. Ramya, and S. Ayothi, “Hybrid dingo and whale

optimization algorithm‐based optimal load balancing for cloud

computing environment”, Transactions on Emerging

Telecommunications Technologies, vol. 34, no. 5, p.e4760,

2023. [CrossRef] [Google Scholar] [Publisher Link]

[20] M.I. Khaleel, “Region-aware dynamic job scheduling and

resource efficiency for load balancing based on adaptive

chaotic sparrow search optimization and coalitional game in

cloud computing environments”, Journal of Network and

Computer Applications, vol. 221, pp.103788, 2024. [CrossRef]

[Google Scholar] [Publisher Link]

AUTHORS

 G. Saranya received her B.E degree in Computer

Science and Engineering from Anna University,

Chennai and M.E degree in Computer Science and
Engineering from Hindustan University, Chennai. She

started her career as an Assistant Professor and has 9

years and 6 months of experience. Currently she is
working as an Assistant Professor in S.A. Engineering

College, Chennai. Her research interests include Deep Learning and Cloud

Computing. She is a lifetime member of ISTE.

 G Belshia Jebamalar currently working as Assistant

professor in Department of computer science in SA
Engineering college, Poonamallee, Thiruverkadu, Tamil

Nadu 600077 India

Chukka Santhaiah I am currently associated with

Sri Venkateswara College of Engineering, Tirupati.
My current responsibilities include coordinating all

the departmental operations, delivering the lectures

on time, conducting the class assignments and
carrying out necessary evaluation and organizing

mid-sem exams, class assignments along with

external and internal lab exams & evaluating the same. I am also responsible
for conducting seminars, conferences, workshops. My academic credentials

include a Doctor of Philosophy (Ph.D.) (CSE) from Sri Venkateswara

University College of Engineering, India, Master of Technology (M.Tech)
(CS) from Rajiv Gandhi College of Engineering, India, Bachelor of

Technology (B. Tech) in CSE from Rajiv Gandhi College of Engineering,

India. Proven record of13 +patents 3granted, and one text book published

lambert publications Submitted research proposals for DST and SERB.

Applied for IP award and DST Inspire award. Research Areas: Image

Processing, Bioinformatics, Computer Networks, Machine Learning,
Artificial Intelligence, and Data Science.

Arrived: 05.07.2024

Accepted: 10.08.2024

https://doi.org/10.1007/s12652-020-01768-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B3%5D%09F.M.+Talaat%2C+M.S.+Saraya%2C+A.I.+Saleh%2C+H.A.+Ali%2C+and+S.H.+Ali%2C+%E2%80%9CA+load+balancing+and+optimization+strategy+%28LBOS%29+using+reinforcement+learning+in+fog+computing+environment%E2%80%9D%2C+Journal+of+Ambient+Intelligence+and+Humanized+Computing%2C+vol.+11%2C+no.+11%2C+pp.4951-4966%2C+2020&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B3%5D%09F.M.+Talaat%2C+M.S.+Saraya%2C+A.I.+Saleh%2C+H.A.+Ali%2C+and+S.H.+Ali%2C+%E2%80%9CA+load+balancing+and+optimization+strategy+%28LBOS%29+using+reinforcement+learning+in+fog+computing+environment%E2%80%9D%2C+Journal+of+Ambient+Intelligence+and+Humanized+Computing%2C+vol.+11%2C+no.+11%2C+pp.4951-4966%2C+2020&btnG=
https://link.springer.com/article/10.1007/s12652-020-01768-8
https://doi.org/10.1007/978-3-030-89899-1_3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B4%5D%09S.+Sagar%2C+M.+Ahmed%2C+and+M.Y.+Husain%2C+%E2%80%9CFuzzy+Randomized+Load+Balancing+for+Cloud+Computing%E2%80%9D%2C+In+International+Conference+on+P2P%2C+Parallel%2C+Grid%2C+Cloud+and+Internet+Computing%2C+pp.+18-29%2C+2021&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-89899-1_3
https://doi.org/10.1155/2022/4100352
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B5%5D%09N.+Arivazhagan%2C+K.+Somasundaram%2C+D.+Vijendra+Babu%2C+M.+Gomathy+Nayagam%2C+R.M.+Bommi%2C+G.B.+Mohammad%2C+P.R.+Kumar%2C+Y.+Natarajan%2C+V.J.+Arulkarthick%2C+V.K.+Shanmuganathan%2C+and+K.+Srihari%2C+%E2%80%9CCloud-internet+of+health+things+%28IOHT%29+task+scheduling+using+hybrid+moth+flame+optimization+with+deep+neural+network+algorithm+for+E+healthcare+systems%E2%80%9D%2C+Scientific+Programming%2C+2022%2C+2022&btnG=
https://onlinelibrary.wiley.com/doi/full/10.1155/2022/4100352
https://doi.org/10.1007/s00607-021-00920-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B6%5D%09A.+Asghari%2C+and+M.K.+Sohrabi%2C+%E2%80%9CCombined+use+of+coral+reefs+optimization+and+reinforcement+learning+for+improving+resource+utilization+and+load+balancing+in+cloud+environments%E2%80%9D%2C+Computing%2C+vol.+103%2C+no.+7%2C+pp.1545-1567%2C+2021.&btnG=
https://link.springer.com/article/10.1007/s00607-021-00920-2
https://doi.org/10.1007/s10586-021-03334-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B7%5D%09H.+Mahmoud%2C+M.+Thabet%2C+M.H.+Khafagy%2C+and+F.A.+Omara%2C+%E2%80%9CAn+efficient+load+balancing+technique+for+task+scheduling+in+heterogeneous+cloud+environment%E2%80%9D%2C+Cluster+Computing%2C+vol.+24%2C+no.+4%2C+pp.+3405-3419%2C+2021&btnG=
https://link.springer.com/article/10.1007/s10586-021-03334-z
https://doi.org/10.1016/j.future.2020.09.016
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B8%5D%09Z.+Miao%2C+P.+Yong%2C+Y.+Mei%2C+Y.+Quanjun%2C+and+X.+Xu%2C+%E2%80%9CA+discrete+PSO-based+static+load+balancing+algorithm+for+distributed+simulations+in+a+cloud+environment%E2%80%9D%2C+Future+Generation+Computer+Systems%2C+vol.+115%2C+pp.497-516%2C+2021.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X19328031
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B9%5D%09J.R.+Adaikalaraj%2C+%E2%80%9CLoad+Balancing+In+Cloud+Computing+Environment+Using+Quasi+Oppositional+Dragonfly+Algorithm%E2%80%9D%2C+Turkish+Journal+of+Computer+and+Mathematics+Education+%28TURCOMAT%29%2C+vol.+12%2C+no.+10%2C+pp.+3256-3273%2C+2021&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B9%5D%09J.R.+Adaikalaraj%2C+%E2%80%9CLoad+Balancing+In+Cloud+Computing+Environment+Using+Quasi+Oppositional+Dragonfly+Algorithm%E2%80%9D%2C+Turkish+Journal+of+Computer+and+Mathematics+Education+%28TURCOMAT%29%2C+vol.+12%2C+no.+10%2C+pp.+3256-3273%2C+2021&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B9%5D%09J.R.+Adaikalaraj%2C+%E2%80%9CLoad+Balancing+In+Cloud+Computing+Environment+Using+Quasi+Oppositional+Dragonfly+Algorithm%E2%80%9D%2C+Turkish+Journal+of+Computer+and+Mathematics+Education+%28TURCOMAT%29%2C+vol.+12%2C+no.+10%2C+pp.+3256-3273%2C+2021&btnG=
https://doi.org/10.1007/s10586-021-03302-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B10%5D+S.+Dhahbi%2C+M.+Berrima%2C+and+F.A.+Al-Yarimi%2C+%E2%80%9CLoad+balancing+in+cloud+computing+using+worst-fit+bin-stretching%E2%80%9D%2C+Cluster+Computing%2C+vol.+24%2C+no.+4%2C+pp.+2867-2881%2C+2021&btnG=
https://link.springer.com/article/10.1007/s10586-021-03302-7
https://doi.org/10.1186/s13677-019-0146-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B11%5D%09S.+Afzal%2C+and+G.+Kavitha%2C+%E2%80%9CLoad+balancing+in+cloud+computing%E2%80%93A+hierarchical+taxonomical+classification%E2%80%9D%2C+Journal+of+Cloud+Computing%2C+vol.+8%2C+no.+1%2C+pp.+22%2C+2019&btnG=
https://link.springer.com/article/10.1186/s13677-019-0146-7
https://doi.org/10.1016/j.jksuci.2020.01.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B12%5D%09U.+K.+Jena%2C+P.+K.+Das%2C+and+M.+R.+Kabat%2C+%E2%80%9CHybridization+of+meta-heuristic+algorithm+for+load+balancing+in+cloud+computing+environment%E2%80%9D%2C+Journal+of+King+Saud+UniversityComputer+and+Information+Sciences%2C+vol.+34%2C+no.+6%2C+pp.2332-+2342%2C+2022&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157819309267
https://www.sciencedirect.com/science/article/pii/S1319157819309267
https://doi.org/10.1016/j.swevo.2021.100841
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B13%5D+E.+H.+Houssein%2C+A.+G.+Gad%2C+Y.+M.+Wazery+and+P.+N.+Suganthan%2C+%E2%80%9CTask+scheduling+in+cloud+computing+based+on+meta-heuristics%3A+review%2C+taxonomy%2C+open+challenges%2C+and+future+trends%E2%80%9D%2C+Swarm+and+Evolutionary+Computation%2C+vol.+62%2C+pp.100841%2C+2021&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S221065022100002X
https://www.sciencedirect.com/science/article/abs/pii/S221065022100002X
https://doi.org/10.1016/j.jpdc.2020.03.022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B14%5D%09A.F.S.+Devaraj%2C+M.+Elhoseny%2C+S.+Dhanasekaran%2C+E.L.+Lydia%2C+and+K.+Shankar%2C+%E2%80%9CHybridization+of+firefly+and+improved+multi-objective+particle+swarm+optimization+algorithm+for+energy+efficient+load+balancing+in+cloud+computing+environments%E2%80%9D%2C+Journal+of+Parallel+and+Distributed+Computing%2C+vol.+142%2C+pp.36-45%2C+2020&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0743731520300459
https://doi.org/10.1145/3485983.3494866
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B15%5D%09J.+Park%2C+B.+Choi%2C+C.+Lee%2C+and+D.+Han%2C+GRAF%3A+A+graph+neural+network+based+proactive+resource+allocation+framework+for+SLO-oriented+microservices%E2%80%9D%2C+In+Proceedings+of+the+17th+International+Conference+on+emerging+Networking+Experiments+and+Technologies%2C+pp.+154-167%2C+2021&btnG=
https://dl.acm.org/doi/abs/10.1145/3485983.3494866
https://doi.org/10.1007/s11277-021-09022-w
https://link.springer.com/article/10.1007/s11277-021-09022-w
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.3390/s22031242
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B17%5D%09P.K.+Bal%2C+S.K.+Mohapatra%2C+T.K.+Das%2C+K.+Srinivasan%2C+and+Y.C.+Hu%2C+%E2%80%9CA+joint+resource+allocation%2C+security+with+efficient+task+scheduling+in+cloud+computing+using+hybrid+machine+learning+techniques%E2%80%9D%2C+Sensors%2C+vol.+22%2C+no.+3%2C+pp.1242%2C+2022&btnG=
https://www.mdpi.com/1424-8220/22/3/1242
https://doi.org/10.1109/ACCESS.2023.3241279
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B18%5D%09M.S.+Al+Reshan%2C+D.+Syed%2C+N.+Islam%2C+A.+Shaikh%2C+M.+Hamdi%2C+M.A.+Elmagzoub%2C+G.+Muhammad%2C+and+K.H.+Talpur%2C+%E2%80%9CA+fast+converging+and+globally+optimized+approach+for+load+balancing+in+cloud+computing%E2%80%9D%2C+IEEE+Access%2C+vol.+11%2C+pp.11390-11404%2C+2023&btnG=
https://ieeexplore.ieee.org/abstract/document/10034760
https://doi.org/10.1002/ett.4760
https://scholar.google.com/scholar?q=%5B19%5D+K.+Ramya,+and+S.+Ayothi,+%E2%80%9CHybrid+dingo+and+whale+optimization+algorithm%E2%80%90based+optimal+load+balancing+for+cloud+computing+environment%E2%80%9D,+Transactions+on+Emerging+Telecommunications+Technologies,+vol.+34,+no.+5,+p.e4760,+2023&hl=en&as_sdt=0,5
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4760
https://doi.org/10.1016/j.jnca.2023.103788
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B20%5D%09M.I.+Khaleel%2C+%E2%80%9CRegion-aware+dynamic+job+scheduling+and+resource+efficiency+for+load+balancing+based+on+adaptive+chaotic+sparrow+search+optimization+and+coalitional+game+in+cloud+computing+environments%E2%80%9D%2C+Journal+of+Network+and+Computer+Applications%2C+vol.+221%2C+pp.103788%2C+2024&btnG=
https://www.sciencedirect.com/science/article/pii/S1084804523002072

