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Abstract – Protein is made up of a variety of molecules that are 

required by living organisms, such as enzymes, hormones, and 

antibodies. In step 2, the max-pooling layer and the 

convolutional layer evaluate the input data to create the finest 

feature map F1, which is half the image size in both horizontal 

and vertical directions. The full feature is then retrieved in step 

2 using the max pooling layer and the residual block at the 

proper resolution. In this paper, we introduce Di-Fuzzy CNN 

(Fuzzy Convolutional Neural Network with Dingo optimizer), a 

novel technique for predicting protein activities that 

incorporates two types of information they are protein sequence 

and protein structure. We extract diverse features at different 

scales utilizing convolutional neural networks to provide 

comprehensive information for feature segmentation. To 

handle a variety of uncertainties in feature selection and 

produce segmentation results that are more dependable, fuzzy 

logic modules are employed. Finally, we employ Dingo 

optimization to boost the suggested method's effectiveness and 

speed in order to produce the best outcomes. Using a variety of 

datasets, the suggested model has been tested (HSSP, PDB, 

UGR14b, DSSP). Tests demonstrate that our approach can 

decrease FPR, increase protein structure accuracy, decrease 

prediction time, and increase TPR for feature selection. Our 

predictive model performs better than most state-of-the-art 

techniques. 

Keywords –Amino Acid Features, Protein Structure, Convolutional 

Neural Network (CNN), Fuzzy logic, Dingo Optimization 

algorithm. 

1. INTRODUCTION 

Polymeric macromolecules known as proteins are made 

up of linear chains of amino acid building blocks connected 

by peptide bonds. Different biological mechanisms in living 

things produce proteins. [1] The structure of a protein and the 

chemical characteristics of its amino acids determine its 

activity. The genetic sequence of a protein can be used to 

determine its structure. Additional information about protein 

structure can be obtained by predicting the primary, 

quaternary, secondary, and tertiary structures [2]. Put 

differently, protein structure prediction refers to the process 

of estimating a protein's three-dimensional structure from its 

fundamental structure [3]. 

Protein structure prediction is the process of forecasting 

a protein's different amino acid sequences from its three-

dimensional structure [4]. Its folding, secondary, tertiary, and 

quaternary structures may all be predicted from its 

fundamental structure. The issues of protein design and 

protein structure prediction are essentially different. One of 

the main objectives of theory and bioinformatics in medicine 

(e.g., drug design) is the prediction of protein structure. 

The basic structure of the amino acid series is depicted 

in Figure 1. A protein's matching gene determines its main 

structure. α-helix could be the typical secondary structural 

state. Since hydrogen bonds develop within the chain, they 

are entropically benifical than beta sheets, despite the fact 

that their potential energy is not as low as that of beta sheets. 

The three-dimensional structure of a protein is mostly 

determined by the interactions between the R groups of the 

amino acids that make up the protein. Proteins must be 

sampled in various experimental conditions in order to 

identify the quaternary structure of proteins, which can be 

done using a range of experimental techniques [5], [18]. 

For the purpose of estimating the three-dimensional 

structure, protein structure prediction is crucial. There is a 

widespread misperception that it is hard to infer a protein's 

structure from its amino acid sequence since the amino acid 

sequence contains sufficient information to reveal a protein's 

three-dimensional structure. Extrapolating characteristics 

from amino acid sequences is a crucial step in increasing the 

precision of protein structure prediction [6, 7]. Utilizing 

sizable protein databases, protein structure prediction 

ascertains if a query sequence, in whole or in part, resembles 

a known structure [8], [19]. 

Finding a protein's structure from a collection of amino 

acids is a difficult task in molecular biology and 

bioinformatics. Many studies use different data mining 
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techniques to predict the structure of proteins. Nevertheless, 

the computing time and forecast accuracy of earlier methods 

were inadequate [20]. For over ten years, protein structures 

have been predicted through the application of neural 

networks. Inspired by neural networks' recent success, DL 

networks have been utilized in several articles to predict 

protein shapes. We suggested a Di-Fuzzy CNN to improve 

the accuracy and speed of protein structure prediction in 

order to solve the current problems [21-24]. 

Figure 1. Resultant Graph of the Proposed System 

The creation and application of protein structure 

predictions is explained in this article. Section II discusses 

related studies on protein structures that make use of different 

deep learning approaches. Section III presents the proposed 

Di-Fuzzy CNN (Dingo Fuzzy Convolutional Neural 

Network), along with a description and associated 

algorithms. Section IV contains performance results and 

associated analysis. Section V concludes with additional 

work and conclusions. 

2. LITERATURE SURVEY  

In 2020 Giri, et al [9] proposed, a MultiPredGO a novel 

multimodal technique for predicting protein functions using 

two separate types of information like protein secondary 

structure and protein sequence. We evaluated our findings to 

a variety of unimodal approaches in addition to two multi-

modal protein function prediction methods like DeepGO and 

INGA. Our proposed method achieves better score.  For 

cellular component and molecular comparisons, there were 

13.05 percent and 30.87 percent enhancements over the best 

available comparing method. 

In 2020 Zhou et al., [10] proposed, a monitored learning 

technique known as combining deep neural networks 

(CDNN) for protein structure prediction. The RMSProp 

optimizer uses the crossentropy error to educate the CDNN 

architecture. With multiple CNNs, the suggested design may 

remove amino acid data and mix them with raw features to 

train massive LSTM networks. In comparison to other 

approaches, the output suggest that the suggested techniques 

can achieve reasonable enactment with the suitable 

parameters. 

In 2020 Bingzhen, et al., [11] suggested utilizing a 

confusion matrix to choose a random forest classification 

model. Using the "remove poor models" strategy, the forest 

models are selected at random. In three various data sets, the 

new outcomes reveal that the new technique has greater 

average classification accuracy and stability than the prior 

iteration. As a result, the confusion matrix-based random 

forest image classification model can increase random forest 

classification ability.                                                                                                                                                            

In 2019 Akter, and Holder, [12] proposed, a graphical 

feature-based framework that derives graphical features from 

sensor network data and employs feature selection 

approaches to choose more valuable features for such a 

classifier to have in prediction problems. Using movement 

data from smart home motion sensors and mobile phone GPS 

sensor information, as well as demographic data from 

smartphone GPS sensor data, the researchers used the 

suggested approach to forecast activity. additionally forecast. 

We discovered that when non-graph-based features are 

added to graphical feature-based frameworks, the outcomes 

improve. 

In 2019 Gao et al., [13] proposed, A novel method for 

predicting equilibrium contacts in proteins is called Deep 

Structural Inference for Proteins (DESTINI), which blends 

template-based structural models with DL algorithms. 

DESTINI accurately predicts the tertiary structure 4 times 

for "hard" targets while simultaneously improving model 

quality for "easy" targets. DESTINI's much improved 

performance is partly due to the introduction of improved 

contact prediction template model. This paper outlines a 

viable technique for resolving the prediction problem in 

protein structure. 

In 2018 Zamil, and Rahman, [14] proposed a multiscale 

local descriptor (MLD) to retrieve multiscale local 

information by feature extraction from a set of proteins. 

Decision trees, random forests, and bootstrap aggregation are 

used in classification approaches. Several algorithms 

produce diverse outcomes, and ensemble classification 

performs more accurately than current techniques. It is 

discovered that random forests and bootstrap aggregation are 

at least 10% more accurate than decision tree methods. 
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In 2018 Yavuz, et al., [15] proposed, An MLP 

methodology for predicting the secondary structure of 

proteins. The amino acid sequence was used to estimate 

protein secondary structure. There are two steps to the 

classification: MLP and direct MLP with CSA enhancement. 

The success rate for direct MLP categorization is 84.01 

percent. For various numbers of rounds and hidden layers, 

the MLP with CSA arrangement achievement is investigated. 

To summarise, using CSA prior to categorization is advised 

for better prediction accuracy. 

In 2018 Xie, et al., [16] proposed, A fuzzy support vector 

machine for secondary structural identification for predicting 

the amino acid features. Agreeing to the K-nearest neighbour 

algorithm, hyperplanes are assigned big membership values, 

whereas outliers are assigned small membership values. To 

test this strategy, we employed 3 databanks (e.g., CB513, 

data11996and RS12). Overall, our results for secondary 

structure prediction are better than regularly used 

approaches. 

In 2017 Wang et al., [17] proposed, A deep recurring 

encoding-decoder network, secondary structure recurrent 

encoder. suggested using a decoder network. The CB513 and 

CullPDB public datasets are used to test the suggested model. 

Especially well-suited to modeling sequence and structural 

links between input protein attributes and secondary 

structure are encoder/decoder designs used in conjunction 

with GRUs. It also performs better than the opposition in 

terms of Q8 and Q3 accuracy. We outperformed earlier 

methods in predicting Q3 and Q8 with 68.20 percent and 73.1 

percent accuracy in fewer epochs on the CB513 and CullPDB 

datasets. 

In 2017 Liu, et al., [18] proposed, two-dimensional deep 

convolutional neural network, the protein's secondary 

structure was predicted. Based on a two-dimensional input 

matrix, two-dimensional CNNs are better at extracting 

sequence interaction features and storing unique amino acid 

position data. Our predictive model performs better than 

most state-of-the-art techniques. 

3. PROPOSED METHOD  

A crucial step in theoretical chemistry and 

bioinformatics is the prediction of protein structures. 

Because predicting protein structure is a critical procedure in 

medicine (for example, medication design) and 

biotechnology. A large number of research projects are 

currently underway with the goal of determining the protein 

structure using various classification techniques. However, 

existing categorization techniques performed poorly. The Di-

Fuzzy CNN Technique was created to address these 

restrictions. 

Figure 2. Proposed Methodology 

Figure 2 depicts the overall process of using the Di-

Fuzzy CNN technique to predict protein structure more 

efficiently and in less time. In the above figure, Fuzzy CNN 

technique is used to identify relevant amino acid 

characteristics from a large protein dataset and predict the 

protein structure. The dingo optimizer algorithm improves 

the accuracy and reduces the computational time as a result. 
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3.1. Feature Selection and Prediction  

Convolutional neural networks and fuzzy learning are 

combined to form a new neural network structure for 

selection and prediction called as Fuzzy Convolutional 

Neural Network (Fuzzy CNN). The proposed technique uses 

fuzzy learning to deal with protein structure uncertainty, and 

the fuzzy logical units are smoothly combined into the Neural 

Network. Each fuzzy logical units are guided by a feature 

map at a specified balance, with the goal of establishing a 

link between the segmentation and the features outcome. A 

robust and accurate outcome can be obtained by taking into 

account, the result of the fuzzy logical units at multiple 

stages. The settings for the convolutional network and fuzzy 

logical units are integrated after end-to-end learning using 

training samples with physically labelled protein structures. 

CNNs have gained popularity recently in the domains of 

bioinformatics and allied ones. Three principals have drawn 

researchers' attention to convolutional neural networks: 

shared weights, spatial subsampling, and local receptive 

fields. Convolutional neural networks perform several 

functions, including scale distortion and covariance shift, to 

varying degrees. Because of these characteristics, 

convolutional neural networks are frequently employed in 

research domains including segmentation and prediction. 

Genetic diversity is assumed to originate from proteins.  

To forecast the secondary structure of proteins, features 

are extracted from sets of amino acids. CNN is 

unquestionably one of the greatest options for prediction 

when combined with its capacity to handle massive volumes 

of training samples. CNN shortens computation times while 

simultaneously capturing information from a large number of 

samples related to proteins. CNN Architecture for protein 

structure prediction shown in Figure 3. 

Figure 3. CNN Architecture for protein structure prediction  

Step 2 involves an inspection of the input data by the 

convolution and max-pooling layers, which then produce the 

finest feature map F1, which is half the size of the image in 

both horizontal and vertical dimensions. Then, in step 2, a 

max-pooling layer and a residual block are used to extract all 

of the features at the appropriate resolution. Two max-

pooling layer steps come after the remaining blocks. There is 

utilization of fully bonded layers. The mapping of 

representations between inputs and outputs is aided by the 

FC layer. 

To build the finest feature for protein structure 

prediction, it selects partially the size in both the vertical and 

horizontal sides from the given input and processes it run 

over 2 convolutional layers first, then using a max-pooling 

level at a pace of two steps. The entire set of features in the 

matching resolution are then extracted using a remaining 

block is followed by a stride of two max-pooling layers. Fully 

connected layers are used. The FC layer assists in the 

mapping of representations between input and output. 

Every membership function labels the feature points 

with a fuzzy linguistic term, and all of the Gaussian function 

membership are provided as 

𝑉𝑥,𝑦,𝑘,𝑐 = 𝑒
−(

𝑘𝑥,𝑦,𝑐−𝜇𝑘,𝑐
𝜎𝑘,𝑐

).2

, 𝑥 = 1…𝑊, 𝑦 = 1…𝑊, 𝑘 =

1. . 𝑀 …                                                                                  (1) 

Where, 

H, W The feature's height and width. 

M Membership function applied for each function. 

(x, y) coordinate feature point of F x , y, c  

𝜇𝑘,𝑐   and 𝜎𝑘,𝑐  The gaussian member function's mean and 

standard deviation 
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V x, y, k, c In channel c, the fuzzy logic feature's k-th output 

(x, y). 

3.2. Optimization 

For better accuracy in Fuzzy CNN, the Dingo 

Optimization Algorithm is used. This optimization uses a 

unique technique to tackle specific problems by altering the 

network's variables and derivatives to find the best solution. 

DOA's main concept is as follows: a rapid sequence to 

initialise the speed and position of the search agent, 

consequently increasing the rate of search agents, generating 

a huge numbers of search agents, and eventually finding the 

best agent. To achieve the best results, the algorithm employs 

3 strategies to optimise the categorised output.  

The first strategy is encircling, the search agents (Dingo) 

often seek nominal objectives while alone, but create groups 

while hunting substantial goals. Flow chart for Dingo 

Optimization Algorithm shown in Figure 4 

𝑚𝑖⃗⃗ ⃗⃗  (𝑝 + 1) = 𝛽`1 ∑
[𝜑𝑎(𝑝)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗−𝑚𝑖⃗⃗ ⃗⃗  ⃗(𝑝)]

𝑁

𝑁
𝑎=0  − 𝑚∗⃗⃗⃗⃗  ⃗(𝑝)                       (2) 

Where, 𝑚⃗⃗ (𝑝 + 1) search agent's new position. 

            𝑚∗⃗⃗⃗⃗  ⃗(𝑝) Best search agent. 

           𝑚𝑖⃗⃗ ⃗⃗  (𝑝) Current search agent. 

            N Random Integer Numbers. 

The second strategy is persecution, in which the search 

agent pursues the small prey separately until it is trapped. 

𝑚𝑖⃗⃗ ⃗⃗  (𝑝 + 1) = 𝑚𝑖⃗⃗ ⃗⃗  (𝑝) + 𝛽1 ∗ 𝑒𝛽2 ∗ (𝑚𝑠⃗⃗ ⃗⃗  ⃗(𝑝) − 𝑚𝑖⃗⃗ ⃗⃗  (𝑝))           (3) 

Where, 𝑚⃗⃗ (𝑝 + 1) dingo movement 

            𝑠 From 1 to the maximum size, a random number 

will be created. 

The third strategy is scavenger, the search agent comes 

finds carrion to eat, they engage in scavenging activity while 

moving around their habitat at random, and then the fitness 

is determined. 

𝑚𝑖⃗⃗ ⃗⃗  (𝑝 + 1) =
1

2
[𝑒𝛽2 ∗ 𝑚𝑠⃗⃗ ⃗⃗  ⃗(𝑝) − (−1)𝜎 ∗ 𝑚𝑖⃗⃗ ⃗⃗  (𝑝)]                    (4) 

In addition, with 3 strategies, the chances of dingoes 

surviving are taken into account. 

𝑆𝑅(𝑖) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠() −𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)

𝑓𝑖𝑡𝑛𝑒𝑠𝑠() −𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑚𝑖𝑛)
                                          (5) 

Where, fitness (max) is the greatest fitness 

            fitness (min) is the inferior fitness ratios 

The low survival rate is given by, 

𝑚𝑖⃗⃗ ⃗⃗  (𝑝) = 𝑚∗⃗⃗⃗⃗  ⃗(𝑝) +
1

2
[𝑚𝑠⃗⃗ ⃗⃗  ⃗(𝑝) − (−1)𝜎 ∗ 𝑚𝑡⃗⃗⃗⃗  ⃗(𝑝)]                    (6)               

Figure 4. Flow chart for Dingo Optimization Algorithm 
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4. RESULTS AND DISCUSSIONS 

The effectiveness of the Di-Fuzzy CNN technique is 

demonstrated in FPR (false positive rate), TPR (true positive 

rate), and is measured at the level of utilizing several 

datasets, including HSSP, PDB (Protein Data Bank), 

UGR14b, and DSSP (Secondary Structure Protein Data 

Bank). Protein structure prediction rate, PSPA (protein 

structure prediction accuracy), and PSPT (protein structure 

prediction time) are examined using tables and graphs in this 

section. 

4.1. True Positive Rate experiment results 

The amount of amino acid characteristics that are 

accurately chosen as related to the total amount of features 

are calculated in TPR. It is employed in the prediction of 

protein structure for feature selection. TPR is expressed as a 

% and can be computed using the equation below. 

𝑇𝑃𝑅 =
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠
∗ 100                        (7) 

Table 1. The Result for TPR 

Dataset  True positive Rate in percentage 

BFO PROTEUS WPC

-

IRFC 

Di-Fuzzy 

CNN 

HSSP 82 83 92 94 

PDB 84 87 95 97 

UGR14b 80 82.7 90 93.4 

DSSP 80.6 82 86 90 

 

Figure 5. Graphical representation for TPR using different techniques and datasets 

The outcomes of TPR in Di-Fuzzy CNN methods are 

compared to current methods such as WPC-IRFC, 

PROTEUS, and BFO for estimating protein structures from 

large protein datasets. When employing 100-550 amino acid 

characteristics from the PDB dataset in a study, the Di-Fuzzy 

CNN approach achieves a TPR of 97 percent, whereas 

previous methods reach only 95 percent, 87 percent, and 84 

percent. Therefore, the proposed method outperforms 

existing methods. Graphical representation for TPR using 

different techniques and datasets shown in Figure 5. The 

Result for TPR shows in Table 1. 

4.2. Rate of False Positives  

The potential of mistakenly rejecting the null hypothesis 

for a test when making many comparisons is known as a false 

positive ratio. The amount of amino acid characteristics that 

are wrongly identified as significant to the total no. of 

features obtained as input is calculated. By using proposed 

technique FPR is low. Graphical representation for FPR 

using different techniques and datasets Figure 6. Comparison 

table for FPR Shows in Table 2 

𝐹𝑃𝑅 =
𝑡ℎ𝑒 𝑛𝑜.  𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑡ℎ𝑎𝑡 𝑤𝑒𝑟𝑒 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑖𝑐𝑘𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
∗ 100 (8)              

Table 2. Comparison table for FPR 

Dataset  False Positive Rate in percentage 

BFO PROTE

US 

WPC-

IRFC 

Di-Fuzzy 

CNN 

HSSP 17.4 17 7 6 

PDB 16 13 5 3 

UGR14b 15 12 6 5 

DSSP 16.7 14 9 7 

  

Figure 6. Graphical representation for FPR using different techniques and datasets 
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4.3. Structure of Proteins Experiment on prediction 

accuracy 

It can be defined as the proportion of the total amount of 

protein structures that can be accurately predicted using 

particular features of amino acids. 

𝑃𝑆𝑃𝐴 =
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑝𝑒𝑟𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑠 
∗ 100   

                                                                                           (9) 

By using Di-Fuzzy CNN methods the results of PAPR is 

compared with different existing techniques such as WPC-

IRFC, PROTEUS, and BFO for accuracy. 

Figure 7. PSPAs graphical representation using different techniques and datasets 

Table 3. Accuracy for predicting protein structure 

           

Dataset  

 

Accuracy rate in% 

BFO PROTE

US 

WPC-

IRFC 

Di-

Fuzzy 

CNN 

HSSP 80 81 91 93 

PDB 84 90 96 98 

UGR14b 84.5 91 95.4 96.2 

DSSP 83 88 90.7 92 

PSPAs graphical representation using different 

techniques and datasets shows in Figure 7. Accuracy for 

predicting protein structure shows in Table 3. 

 By using PDB dataset the proposed technique achieves 

98.2 percent, while previous methods reach only 96%, 90%, 

84%. Therefore, the proposed method gives more accuracy 

compared to others. 

4.4. Protein structure prediction time 

PSPT is a metric that evaluates how long it takes to 

categorize the structure of protein from a large protein dataset 

file. It is measured in milliseconds (ms). Table for predicting 

time shown in Table 4. 

𝑃𝑆𝑃𝑇 = 𝑁 ∗ 𝑡𝑖𝑚𝑒(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒)          (10) 

Table 4. Table for predicting time 

Dataset  Time taken for predicting protein 

structure in ms 

BFO PROTE

US 

WPC-

IRFC 

Di-Fuzzy 

CNN 

HSSP 28 27 16 14 

PDB 25 26 13 11 

UGR14b         24 22 19 16 

DSSP 23 22.8 20 16.4 

Figure 8. PSPTs graphical representation using different techniques and datasets 

PSPTs graphical representation using different 

techniques and datasets Figure 8. The outcomes of PSPT in 

Di-Fuzzy CNN methods are compared to current methods 

such as WPC-IRFC, PROTEUS, and BFO for estimating 
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protein structures from large protein datasets. When 

employing 100-550 amino acid characteristics from the PDB 

dataset in a study, the Di-Fuzzy CNN decrease the prediction 

time as 11 milliseconds, whereas previous methods reach 

only in 13 ms, 26 ms, 25 ms respectively. Therefore, the 

proposed method outperforms existing methods.  

5. CONCLUSION 

In this study, amino acid sequences were used to deduce 

the structure of proteins. In this article, we introduce a Di-

Fizzy CNN that can accurately predict proteins from amino 

acids. It is proposed to learn high-level semantics through 

end-to-end supervised learning of convolutional structures in 

neural networks combined with fuzzy logic. Fuzzy allows 

convolutional neural networks to focus more on protein 

structure. The proposed method is tested on a large-scale 

protein dataset and compared using metrics such as TPR, 

FPR, PSPA, and PSPT. Compared with state-of-the-art 

features, Di-Fuzzy CNN result analysis achieves higher 

performance in terms of PSPA and PSPT, resulting in 

effective disease diagnosis. Future research should expand 

the dataset size and investigate the accuracy rates of deep 

learning models (e.g., RNNs, capsule networks) used to 

extract features from protein datasets. Explore spatial 

complexity and predict protein structure using large datasets. 
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