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Abstract – The Internet of Things (IoT) offers healthcare 

applications that benefit customers, physicians, hospitals, and 

insurance companies. Wearable technology like fitness bands 

and other wirelessly connected gadgets like blood pressure 

monitors, blood glucose meters, and heart rate monitors are 

examples of these uses. The wearable sensor devices utilized in 

IoT-based Electrocardiogram (ECG) denoising systems 

continuously produce a huge volume of signals. IoT sensor 

devices produce ECG signals at a very rapid rate. As a result, 

the IoT-based health monitoring system generates ECG signals 

with very high noise levels. A clean ECG signal is needed for 

effective heart disease management. Imbalanced electrolytes 

cause an abnormal ECG reading. The noise can also cause 

fluctuations the ECG signals. This study shows a novel IoT-

based ECG denoising method by combining two filters: the 

Median Modified Weiner (MMW) and the Extended Kalman 

filter (EKF), to overcome this issue. The characteristic of ECG 

signals are first subjected to the MMW filter. The extracted 

ECG signal is then explained with the Extended Kalman filter. 

MAT LAB simulates the proposed method. Root mean square 

error (RMSE), contrast-to-noise ratio (CNR), signal contrast, 

and coefficient of variation (COV) are used in the proposed 

MMW-EKF framework to the current systems are compared to 

Signal-to-noise ratio (SNR). We demonstrate how the suggested 

technique effectively distinguishes between various ECG signals 

from a noisy sample input. 

Keywords – Electrocardiogram; Internet of things; Denoising; 

Median Modified Weiner Filter; Extended Kalman Filter. 

1. INTRODUCTION 

Patients can receive immediate treatment and return to 

normal activities by using remote ECG monitoring [1,2]. The 

ability to detect cardiac events earlier results in fewer 

unnecessary hospitalizations because the patient can be 

treated at home [3]. In the Intensive Care Unit (ICU) and the 

operating room, ECG monitoring is now considered standard 

of care [4]. It is used to identify arrhythmias and ischemia, as 

well as to evaluate the performance of a 

pacemaker/automatic implanted cardioverter-defibrillator 

[5,6]. In this era, it is possible to monitor the vital processes 

of humans using the IoT technology, regardless of where 

they are or what they are doing [7, 8]. Patients can monitor 

and control their health parameters due to the availability and 

advancement of IoT devices. The combined system offers the 

user several benefits, including detecting cardiac illness 

through symptoms in an emergency, transmitting messages 

to doctors and assisting in its treatment [9-11]. 

In today's world, everyone has a hectic schedule and 

leads a fast-paced lifestyle, which increases the risk of heart 

disease [12]. Cardiovascular disorders are currently the 

primary cause of death worldwide, emphasizing the 

importance of using an excellent methodology to assess a 

patient's cardiac health [13]. One of the most important and 

widely used medical instruments for heart analysis and 

disease diagnosis is the ECG [14]. It is a non-invasive 

treatment used in hospitals for measuring and diagnosing 

irregular cardiac rhythms. While the ECG signal is being 

recorded, some noise distortions can interfere [15]. Baseline 

drift (also known as lower frequency noise), muscle noise, 

electromagnetic interference and power line interference 

from various other devices can all cause noise in ECG 

readings [16,17]. As a result, one of most significant 

challenges in biomedicine signal processing is the extraction 

for pure cardio-logical indices from noisy observations, 

which necessitates dependable strategies to preserve 

diagnostic data of recorded signal [18,19]. 
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Figure 1. Typical ECG Signal [20, 21] 

ECG signals have a frequency range of 0.5 to 100 Hz, 

and artifacts play a significant part in their processing [22]. 

It is made up of multiple parts, including the P wave, Q, R, 

and S waves (QRS) complex. Figure 1 depicts a typical ECG 

signal, with QRS complex representing high frequency 

components and T and P representing low frequency 

components, and any deviation in these parameters indicates 

the presence of heart irregularities. These waves are caused 

by ventricular repolarization, ventricular depolarization, and 

atrial depolarization in the distant field. Conventional filters 

are frequently employed to remove various undesirable 

frequency components from ECG data [23-25].  

There have been several studies in recent years on ways 

to reduce these noises prior to disease identification and 

classification [26]. To remove such noises, a variety of pre-

processing approaches are available. Adaptive filtering is one 

of the strategies for noise reduction in ECG signals, although 

it consumes a lot of time [27, 28]. The MMF is another 

common nonlinear filtering strategy for extracting tiny 

cardiac components from noisy ECGs, although it fails to 

remove Gaussian noise [29, 30]. The Wavelet Transform 

(WT) approach for denoising biological signals with multi-

resolution characteristics, such as ECG, has gotten much 

interest [31]. EKF uses a linear model of the expected state 

with noise-corrupted observations to find the unknown state 

of a dynamical system. Since most systems were nonlinear, 

the EKF has been enhanced [32, 33]. Because of this, IoT 

devices' massive amounts of sensor data are not being stored 

using standard data processing tools and methodologies [34, 

35]. Several techniques for extracting ECG components 

contaminated by background noise have been proposed [36]. 

Furthermore, the state model or measurements are unreliable 

in highly contaminated ECGs. These constraints push us to 

seek better solutions. The IoT model-based MMW-EKF 

algorithm has been proposed in this paper as a wiener 

filtering framework. Because of its nonlinear framework, the 

proposed algorithm outperformed other non-Gaussian non-

stationary algorithms at all input SNRs. As a result, the 

proposed technique can completely trace the ECG signal 

even during periods with a lot of noise. In other words, to 

increase ECG denoising performance while reducing 

computing complexity by applying the MMW-EKF 

architecture. However, overall filtering performance is 

expected to be improved because MMW-EKF has proven to 

be accurate and efficient in noise removal. 

This is how the rest of the study is structured. The 

reviews that were consulted are included in Section 2. 

Sections 3 present the proposed methods. Experimental and 

analytical results are discussed in Section 4. Section 5 

discusses the conclusions of the method that has been 

described. 

1.1. Background And Motivation 

EKF is an efficient optimal estimator that provides a 

recursive computational technique for forecasting the state of 

a discrete-information controlled process from typically 

noisy observations while simultaneously estimating the 

estimates' uncertainty. It is used to decrease noise for power 

line interference. It is used to lessen baseline wander noise. 

We thoroughly reviewed ECG analysis and presented it as a 

stages-based process model in order to more precisely 

characterise and categorise the flow and importance of each 

phase of ECG signal processing. Considering the significant 

effects that effective ECG signal analysis has on both public 

health and the economy, we also conducted this study to 

provide a perspective on software and hardware instruments, 

as well as real-time monitoring using portable and wearable 

devices. 

2. LITERATURE REVIEW 

In 2021 Lutin et al., [37] created a learning base (QIE) 

was constructed and 23 photoplethysmography (PPG) 

datasets from the TROIKA database were studied. To the 

best of our knowledge, in order to improve heart rate (HR) 

estimate, the suggested quality engine is first tested using 

wrist PPG data obtained during various physical activities. 

When employed in combination with the cutting-edge 
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Wiener filtering & Phase vocoder (WFPV) method, the QIE 

improved HR estimate by 43% on average. 

In 2021 Cheng et al., [38] proposed a novel approach for 

automated ECG recognition and categorization. It is used to 

lessen baseline wander noise. We thoroughly reviewed ECG 

analysis and presented it as a stages-based process model in 

order to more precisely characterize and categories the flow 

and importance of each phase of ECG signal processing. 

Considering the significant effects that effective ECG signal 

analysis has on both public health and the economy, we also 

conducted this study to provide a perspective on software and 

hardware instruments, as well as real-time monitoring using 

portable and wearable devices. 

In 2021 Salehi and Vahidi, [39] suggested three phases 

and three denoising filters. I recommend three steps, three 

denoising filters. The Coefficient of Friction (COF) is 

calculated from the noise picture in the first phase. The 

coefficients of variation are then subjected to fuzzy c-means 

(FCM). The use of FCM results in the fuzzy categorization 

of picture areas. The three denoising filters are combined in 

the second stage. Fuzzy logic techniques are used in the third 

stage to analyze the final image. The experimental results 

indicate that the proposed denoising method can maintain 

image featurs and edges when compared to earlier 

despeckling techniques. 

In 2022 Sarafan, et al., [40] proposed a suggested a novel 

method for extracting the ECG non-invasively from single-

channel ECG signals using the ensemble Kalman filter 

(EnKF) Using the PhysioNet 2013 Challenge bank, the 

suggested method produces an F1 score of 97.25%, a 

sensitivity of 96.91%, and a minimum positive predictive 

value of 97.59. Our findings further demonstrate the 

effectiveness and dependability of the suggested strategy, 

which works better than earlier EKF-based algorithms. 

In 2022 Tahir, et al., [41] proposed an adaptive noise 

cancellation (ANC) based on EKF that takes the PLI 

frequency into account as a different model parameter. As a 

result, it can follow power line interference (PLI) with a 

floating frequency. In recursive least squares (SSRLS) state 

space, filter-based PLI suppression differs from the 

suggested suppressor's performance. The EKF-based ANC 

system that is offered performs better than SSRLS-based 

model, according to the simulation findings. PLI is 

successfully removed from the ECG in each of the four cases 

that were examined using the RLS-based ANC approach.  

In 2022 Sarafan, et al., [42] proposed the development 

of a new approach for denoising ECG data based on EnKF. 

Additional filter techniques that we analyze are the Savitzky-

Golay (SG) filter, the ensemble empirical mode 

decomposition (EEMD), the recursive least squares (RLS) 

filter, the normalized least mean squares (NLMS) filter, and 

the total variation denoising technique. To execute. (TVD), 

wavelet, EKF. A noise stress test database from MIT-BIH 

where used. Upgraded MIT-BIH database with motion 

artefacts produces an average SNR of 10.96, a PRD of 

150.45, and a correlation value of 0.959 using the 

recommended approach. 

In 2023 Minh, et al., [43]. suggested a cutting-edge 

framework that uses data mining techniques to extract 

information related to diagnosing cardiac illness at the 

network edge while maintaining the integrity of ECG data by 

eliminating noise. Empirical studies demonstrate that the 

suggested framework increases real-time detection accuracy 

while preserving information integrity, in comparison to 

earlier approaches. 

In 2023 Priyadarshini, et al., [44] proposed in order to 

ensure optimal energy utilization with little battery capacity, 

we have developed a lightweight solution that prioritizes 

slope amplification with real-time segmentation methods for 

complex QRS assessment of pulse rate. The power is 

provided by local computing on the node. With an enhanced 

frequency of 269 MHz and a power consumption of 0.7 MW, 

the Spartan6 FPGA on which the design was based proved 

perfect for real-time ECG monitoring devices. 

In 2023 Cañón-Clavijo, et al., [45] presented an IoT 

method for monitoring ECG signals and analysing cardiac 

data to produce an alarm when an arrhythmia is detected. The 

best classification accuracy for the studied arrhythmias, 

according to the data, is achieved by the k-nearest neighbor 

method (94% for premature ventricular beats, 81% for fusion 

of ventricular beats, and 82% for extra sexual beats). 

Additionally, it can discriminate 93% and 97%, respectively, 

between regular and undefinable hits. 

These techniques are better than earlier approaches, but 

they have certain shortcomings as well. Here are a few 

instances of aberrant ECG readings. These include: Right 

and left bundle branch block symptoms, premature atrial and 

ventricular contractions, nonspecific T-wave alterations, and 

ventricular hypertrophy. To overcome these drawbacks, 

Efficient MMW and EKF Based ECG Denoising techniques 

has been proposed. 

3. PROPOSED MMW-EKF ALGORITHM  

In this paper proposed a novel Efficient MMW-EKF 

Based ECG Denoising Method has been proposed. The 

MMWF algorithm is employed to preprocess the noisy ECG 

signal. As stated, the MMWF estimation uses the signal's 

characteristic to denoise it. The partially denoised ECG 

signal is subsequently processed using the EKF approach to 

solve that problem. To denoise the ECG dynamic signal 

obtained after MMWF, the EKF discretized it. Finally, the 

ECG signal is reconstructed by combining all of the EKFs. 

As a result, the noises' harmful effects were significantly 

reduced. In Figure 2, a block diagram depicts the proposed 

method, which successfully combines MMW-EKF 

methodologies. 

This section describes our proposed ECG denoising 

method in detail. First, the MMW filters is applied to the 

characteristic ECG signal. The EKF is then utilized to 

describe the method for extracting the ECG signal from 

noise. 

This approach can maintain the edge signals while the 

noise distribution is reduced. The following is how the 

MMWF algorithm is calculated: 
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ℎ𝑚𝑚𝑤𝑓 (𝑥, 𝑦) = �̂� + 
𝜎2− 𝑢2

𝜎2
[𝑎(𝑥, 𝑦) − �̂�]                             (1) where �̂� is the median value's size, 𝜎2and  𝑢2are the 

signal's Gaussian noise variance and the noise variation, 

respectively, and a (x, y) is the amplitude at the time (x, y). 

 

Figure 2. Denoising of ECGs: Overall Proposed Architecture 

3.1. MMWF Algorithm: ECG Signal Characteristics 

The MMWF approach is employed to lessen the 

distribution of noise in ECG signal. The background area of 

a deteriorated signal is denoised using the median filter to 

enhance signal quality. Additionally, the Wiener filter (WF) 

is generally employed in this method to maintain the edge 

signal. The MMWF method, which is based on the WF, 

decreases noise in the deteriorated signal by replacing the 

values of the mask matrix with the median values. The WF 

is represented as follows in the r ×t sized mask matrix: 

μ =
1

𝑟𝑡
∑ 𝑛(𝑟, 𝑡)𝑟,𝑡∈𝑎   

𝜎2 =
1

𝑟𝑡
∑ 𝑛2(𝑟, 𝑡) − μ2𝑟,𝑡∈𝑎   

Where, μ is the mean, 𝜎2 is the variance of Gaussian 

noise in the signal, r × t is the size of the neighborhood area 

an in the mask, and n (r, t) represents each value in the area 

a. 

Thus, the MMWF is represented as follows: 

𝑘𝑚𝑚𝑤𝑓(𝑟, 𝑡) = μ +
𝜎2−𝑣2

𝜎2
(𝑏(𝑟, 𝑡)) − μ)    

where 𝑣2 is the mask WF matrix's noise variance setting. 

The MMWF technique has the benefit of enhancing the 

poor signal quality in the following ways: Comparing the 

drop-off effect to the median and Wiener filter approaches, 

the edge signal is better retained. In conclusion, the MMWF 

approach performs better than traditional filters in terms of 

denoising effect and can keep the edge information while 

removing the background noise signal.  

3.1.1. Evaluation of Quality 

ECG signals are analyzed by MMWF, and reconstructed 

signals were acquired. The CNR, COV, and SNR linked to 

noise are analyzed.  

The degree of dispersion around the mean is inversely 

correlated with the COV. It is frequently stated as a 

percentage. [46,47] It enables for the comparison of value 

distributions with disparate measurement scales because it 

lacks units. The strength of the signal is contrasted with the 

strength of the noise in a SNR. Decibels are most frequently 

used to express it (dB). Higher numbers often denote a better 

specification since there is a greater ratio of valuable 

information (the signal) to undesired data (the noise). CNR 

is similar to the metric SNR.   

Because COV and CNR are derived using a single 

region’s signal and variance values, they were employed for 

noise level analysis. Furthermore, the CNR was used to 

calculate the signal difference between two neighboring 

regions' variance values while also taking noise and contrast 

into account. 

𝐶𝑂𝑉 = 
σX

𝛿
                                                                             (2) 

𝑆𝑁𝑅 = 
𝑆𝑋

𝜎𝑋
                                                                            (3) 

𝐶𝑁𝑅 = 
|𝑆𝑋− 𝑆𝑌|

√𝜎2𝑋+ 𝜎
2
𝑌
                                                                  (4) 

The Return on Investment (ROI’s) average standard 

deviation and signal intensity are 𝑆𝑋 and 𝜎𝑋, respectively, 

whereas the background region’s average standard deviation 

and signal intensity are 𝑆𝑋 and 𝜎𝑋. The ROI is used to mould 

the image compression to one particular area of compression. 

Instead of reducing all the pixel intensities we are using ROI 

to specify the required arrangements. 

In addition, for the purpose of determining the loss of 

high-frequency signals caused by MMWF technique, signal 

similarity was evaluated with reference to noise-free signals. 

Applied the following parameters for this evaluation: RMSE, 

cubic centimetre (CC) and Peak Signal Noise Ratio (PSNR): 
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𝑅𝑀𝑆𝐸= √
∑ (𝑟𝑖− 𝑐𝑖)

2𝑁
𝑖=1

𝑁
                                                                (5) 

𝑃𝑆𝑁𝑅 = 10( 
𝑆𝑚𝑎𝑥

2

𝑅𝑀𝑆𝐸2
 )                                                                      (6) 

The reference and comparison signals are represented by 

𝑟𝑖 and 𝑐𝑖, respectively, and 𝑆𝑚𝑎𝑥
2
 is maximum signal 

intensity in ROI. 

𝐶𝐶=
∑ (𝑟𝑖− �̂�)(𝑐𝑖− 𝑐̂)
𝑁
𝑖=1

√∑ (𝑟𝑖− �̂�)
2𝑁

𝑖=1 √∑ (𝑐𝑖− 𝑐̂)
2𝑁

𝑖=1

                                                          (7) 

The 𝑐̂  and �̂�  represents the average values of 

comparison and reference signals. 

The signal loss is induced by MMWF smoothing can be 

assessed using PSNR and RMSE, which quantitatively show 

the signal difference. COV, CNR and SNR linked to noise 

was analyzed to evaluate MMWF’s noise reduction 

efficiency from the obtained signals, allowing overall quality 

of signal to be evaluated. Thus, characteristics of ECG signal 

are evaluated. 

3.2. EKF To Train MMWF for ECG Denoising (MMW-

EKF) 

The EKF is utilized to denoise the ECG signal once the 

parameters have been analyzed. Since the nonlinear dynamic 

ECG model Eqn. (5), (6), and (7) are continuous time, and 

the EKF is a discrete-time technique, continuous nonlinear 

dynamic ECG model Eqn. (5), (6), and (7) must be 

discretized. A first-order numerical method called the Euler 

methods, often referred to as the forward Euler methods, is 

used to resolve ordinary differential equations (ODEs) with 

a specified beginning value. Euler method is used to discrete 

Eqn. (5), (6), and (7).  As a result, the discrete form of (7) 

will be: 

𝑎(𝑢 + 1) = (1 + 𝜌ℎ)𝑎(𝑢) − 𝜔ℎ𝑏(𝑢)  

𝑏(𝑢 + 1) = (1 + 𝜌ℎ)𝑏(𝑢) + 𝜔ℎ𝑎(𝑢)  

𝑐(𝑢 + 1) = −∑
𝑎𝑗

𝑏𝑗
2 ℎ∆𝜃𝑗 𝑒𝑥𝑝 𝑒𝑥𝑝 (−

∆𝜃𝑗
2

2𝑏𝑗
2)𝑗𝜖{𝑃,𝑄,𝑅,𝑆,𝑇}  −

((ℎ − 1)𝑐(𝑢) − ℎ𝑐0)                                                           (8) 

where h is the sampling time. 

The following is a more compact rewrite of the nonlinear 

discrete ECG model (26): 

𝑋𝑢+1 = f (𝑋𝑢)                                                                                 (9) 

where 𝑋𝑢 is the state vector, and it is represented by 𝑋𝑢 

= [𝑎𝑢 𝑏𝑢 𝑐𝑢]
𝑇. 

( 𝑎(𝑢+1)
𝑏(𝑢+1)

) = (1+𝜌ℎ)𝑎(𝑢)−𝜔ℎ𝑏(𝑢)
(1+𝜌ℎ)𝑏(𝑢)+𝜔ℎ𝑎(𝑢)

  

𝑐(𝑢 + 1) − ∑
𝑎𝑗

𝑏𝑗
2 ℎ∆𝜃𝑗 𝑒𝑥𝑝 𝑒𝑥𝑝 (−

∆𝜃𝑗
2

2𝑏𝑗
2)𝑗𝜖{𝑃,𝑄,𝑅,𝑆,𝑇}  −

((ℎ1)𝑐(𝑢) − ℎ𝑐0)                                                                 (10) 

The state equation of the discrete ECG model without 

noise is represented by the vector equation (28). We need to 

introduce some random sounds in (27) to simulate a more 

realistic ECG signal: 

𝑋𝑢+1 = f (𝑋𝑢 , 𝑟𝑢)                                                                       (11) 

where 𝑟𝑢 = [𝑟1, 𝑟2, 𝑟3]
𝑇state noise is an additive random 

vector that is normal and Gaussian with a zero mean, then 

(28) can be written as: 

(
𝑎(𝑢+1)
𝑏(𝑢+1)

𝑐(𝑢+1)

) =

(

 
 (1+𝜌ℎ)𝑎(𝑢)−𝜔ℎ𝑏(𝑢)+ 𝑟1(𝑢)

(1+𝜌ℎ)𝑏(𝑢)+𝜔ℎ𝑎(𝑢)+𝑟2(𝑢)

−∑
𝑎𝑗

𝑏𝑗
2ℎ∆𝜃𝑗𝑒𝑥𝑝𝑒𝑥𝑝(−

∆𝜃𝑗
2

2𝑏𝑗
2)𝑗𝜖{𝑃,𝑄,𝑅,𝑆,𝑇} −((ℎ−1)𝑐(𝑢)−ℎ𝑐0)+ 𝑟1(𝑢)

)

 
 

           (12) 

The state vector 𝑋𝑢 = [𝑎𝑢 𝑏𝑢 𝑐𝑢]
𝑇can be connected to the 

measurement equation corresponding to state space 

representation (29) by the following relation: 

𝑏𝑢 = g (𝑋𝑢,𝑚𝑢) 

    = [0 0 1] 𝑋𝑢 + 𝑚𝑢                                                         (13) 

𝑚𝑢  is measurement noise and 𝑦𝑢 is the considered 

measure. 

A linear approximation of (30) is required to use EKF 

(see (2) and (3)). To compute the Jacobian matrices entries 

(see (3)), arrange (30) and (31) as follows: 

{
𝑎(𝑢 + 1)

𝑏(𝑢 + 1)

𝑐(𝑢 + 1)
=

𝑋 ( 𝑎(𝑢), 𝑏(𝑢), 𝑐(𝑢), 𝑟1(𝑢))
𝑌 ( 𝑎(𝑢), 𝑏(𝑢), 𝑐(𝑢), 𝑟2(𝑢))
𝑍 (𝑎(𝑢), 𝑏(𝑢), 𝑐(𝑢), 𝑟3(𝑢))

                       (14) 

𝑏𝑢 = g (𝑋𝑢,𝑚𝑢)                                                                                   (15) 

The entries of the Jacobian matrix 𝐴𝑘 are then 

calculated. 

𝜕𝑋

𝜕𝑎
 = 1 + h– (

2ℎ𝑎(𝑢)2 + ℎ𝑏(𝑢)2 

√𝑎(𝑢)2 +𝑏 (𝑢)2 
) 

𝜕𝑋

𝜕𝑏
 = - 

ℎ𝑎(𝑢)𝑏(𝑢)

√𝑎(𝑢)2 + 𝑏(𝑢)2 
 - 𝜔ℎ

𝜕𝑋

𝜕𝑐
 = 0  

𝜕𝑌

𝜕𝑎
 = - 

ℎ𝑎(𝑢)𝑏(𝑢)

√𝑎(𝑢)2 + 𝑏(𝑢)2 
 + 𝜔ℎ 

𝜕𝑌

𝜕𝑏
 = 1 + h - (

ℎ𝑎(𝑢)2 + 2ℎ𝑏(𝑢)2 

√𝑎(𝑢)2 + 𝑏(𝑢)2 
)
𝜕𝑌

𝜕𝑐
 = 0 

𝜕𝑍

𝜕𝑎
=∑

𝑎𝑗𝜔

𝑏𝑗
2ℎ𝑦(𝑢)

𝑎(𝑢)2 + 𝑏(𝑢)2 
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

∆𝜃𝑗
2

2𝑏𝑗
2) − [ 1 − 

∆𝜃𝑗
2

𝑏𝑗
2 ]𝑗𝜖{𝑃,𝑄,𝑅,𝑆,𝑇}  (16) 

𝜕𝑍

𝜕𝑦
 = ∑

− 
𝑎𝑗𝜔

𝑏𝑗
2ℎ𝑥(𝑢)

𝑥(𝑢)2 + 𝑦(𝑢)2 
𝑒𝑥𝑝 𝑒𝑥𝑝 (−

∆𝜃𝑗
2

2𝑏𝑗
2) − [ 1 − 

∆𝜃𝑗
2

𝑏𝑗
2 ]𝑗𝜖{𝑃,𝑄,𝑅,𝑆,𝑇}  

𝜕𝑍

𝜕𝑧
 = 1 – h 

𝜕𝑋

𝜕𝑟1
 = 

𝜕𝑌

𝜕𝑟2
 = 

𝜕𝑍

𝜕𝑟3
 = 1 

𝜕𝑋

𝜕𝑟2
 = 

𝜕𝑋

𝜕𝑟3
 = 

𝜕𝑌

𝜕𝑟1
 = 

𝜕𝑌

𝜕𝑟3
 = 

𝜕𝑍

𝜕𝑟1
 = 

𝜕𝑍

𝜕𝑟2
 = 0 

𝜕𝑔

𝜕𝑥
 = 
𝜕𝑔

𝜕𝑦
 = 0; 

𝜕𝑔

𝜕𝑧
 = 1 − ℎ; 

𝜕𝑔

𝜕𝑚
 = 1 

For noise removal, the proposal utilizes the (Enterprise 

data management) EDM implementation. However, our 

method constructs an MMW-EKF filter using the dynamical 

set of equations, which uses the state dynamics and ECG as 

an observation. As a result, the proposed MMW-

EKF technique for ECG denoising is an efficient. 
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4. RESULT AND DISCUSSION   

The experimental arrangement of the proposed MMM-

EKF technique based denoised was implemented using 

MATLAB. A comparison of the proposed MMM-EKF 

technique Performance with some filters they are Gaussian 

Filter (GF), Median Filter (MF) and CF is made. The 

proposed MMW-EKF based on ECG denoising is simulated 

in this section using MATLAB. Figure 3 depicts the filter 

outputs. 

Datasets 

A distinct clinical ECG dataset that has been optimized 

for machine learning computers is the PTB-XL database. 

21,837 clinical 12-lead ECGs, each lasting 10 seconds and 

recorded at 500 Hz and 100 Hz with 16-bit resolution, are 

included in the PTB-XL ECG dataset. These ECGs are from 

18,885 different people. 

 

a) Power line Interference 

 

b) Muscle artefact 
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c) Gaussian noise 

 

d) Composite noise 

Figure 3. Graphical Illustration for a Denoised ECG Signal using the Median Modified Wiener and Extended Kalman Filters 

with Various Noises 

 

Figure 4. Proposed Method for a Denoised Signal 



L. Jenifer et al. / IJDSAI, 01(02), 10-20, 2023 

 

 
17 

    

Figure 4 displays the original, clean ECG signal, the 

noisy variations in the signal, and the denoised signal 

produced by the suggested technique. With a 10dB input 

SNR, the graphs exhibited database record number 100 in the 

MMW-EKF. 

When comparing the Kalman, Wiener, and proposed 

MMW-EKF filters to various data sets, SNR and RMSE were 

determined for each data set. Our proposed approach has a 

greater SNR and a lower RMSE (see Table 1). 

Table 1. Different noise has different values for various performance parameter 

SIGNAL EXPECTATION 

Noises Filters SNR RMSE 

  Data 

103 

Data 

105 

Data 

121 

Average Data 

103 

Data 

105 

Data 

121 

Average 

PI WF 6.985 6.435 9.245 7.565 0.062 0.132 0.051 0.072 

KF 4.773 5.435 6.422 5.546 0.165 0.156 0.115 0.143 

MMW-EKF 7.123 6.945 9.545 7.856 0.051 0.111 0.021 0.0371 

Gaussian WF 5.352 5.986 8.216 6.593 0.122 0.148 0.073 0.121 

KF 4.455 5.255 6.768 5.458 0.221 0.186 0.144 0.184 

MMW-EKF 5.455 6.203 8.521 6.956 0.101 0.122 0.055 0.026 

Muscle Artifact WF 6.846 5.344 8.979 7.048 0.073 0.185 0.056 0.102 

KF 5.321 5.236 7.426 6.012 0.131 0.162 0.093 0.142 

MMW-EKF 7.235 5.682 9.235 7.3315 0.052 0.098 0.045 0.065 

Composite WF 6.435 4.911 7.347 6.247 0.063 0.234 0.095 0.142 

KF 4.726 5.188 6.325 5.349 0.160 0.163 0.152 0.159 

MMW-EKF 6.985 5.356 7.563 6.5641 0.044 0.132 0.054 0.084 

The CNR, COV and SNR, were calculated to compare 

the noise levels of the MMW-EKF applied signal to the 

original signal and other existing approaches. Over the 

original signal and several existing approaches, the CNR, 

COV and SNR values of the MMW-EKF reconstructed 

signal are increased by factors of 2.01, 1.02, and 1.60, 

respectively (see Figure 5). 

 

a) COV 

 

b) SNR 

 

c) CNR 

Figure 5. Comparison between the Original Signal and the 

Signal Reconstructed with MMW-EKF 

 

Figure 6. Measures of PSNR 

Our results indicate that the MMW-EKF can 

successfully reduce noise from ECG signals. Furthermore, 

the sample should be optimized for signal loss and noise level 
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to improve MMW-EKF efficiency. Measures of PSNR is 

shown in Figure 6. 

The PSNR between two images - the actual image and 

its noisy approximation - is used to describe noise. The 

maximum pixel value for 8-bit pictures is 255. PSNR values 

for image compression are often in the 30 to 50 dB range. 

5. CONCLUSION 

The MMW-EKF were used in this paper to design an IoT 

based ECG denoising process that allowed advantage of the 

denoising features of each filter. The proposed technique 

denoises a noisy signal by preprocessing it and estimated the 

signal’s characteristics with the MMW filter. To further 

decrease the effects of additive noise, the partially denoised 

ECG signal is analyzed and discretized using an EKF. The 

performance of parameters such as COV, SNR, and CNR is 

also analyzed in the simulation results. The analysis of this 

research confirms the proposed method’s suitable for 

filtering noisy ECG signals. In the event of a sudden illness, 

the terminal will also have the ability to collect data for 

processing and notify the patient's family of a data transfer. 

To reduce distortion and boost system reliability, additional 

work entails adding baseline variation to the EDM.  
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