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Abstract — The massive growth of IoT-based data has increased
the necessity to schedule the tasks effectively and distribute the
resources in the cloud environment efficiently. Conventional
cloud load-balancing approaches are usually incapable of
handling diverse workloads, ensuring high resource
underutilization, and reducing delays in dynamic operating
environments. To overcome such obstacles, the paper proposes
a Hybrid Momentum-Pyramid Optimization Algorithm
(HMPOA) based IoT-Cloud Scheduling Model that combines
the features of Momentum Search Algorithm (MSA) and Giza
Pyramid Construction Algorithm (GPCA). The main objective
is to efficiently schedule and allocate IoT tasks in a cloud
environment. The proposed method maximizes trust, delay and
distance metrics to determine optimal execution paths and
assign tasks evenly across the virtual machines. The
performance of the proposed method is evaluated in terms of
higher resource utilization, throughput, energy efficiency, and
makespan compared to recent methods. The numerical results
show that, at 30 VMs, the proposed method has 84.77%
utilization, 5-12% more than APOA, Meta-RHDC, and
HDWOA-LBM. Similarly, at 60VMs, the proposed method
achieves high scalability 86.90%, compared to APOA of 5.43%,
and HDWOA-LBM of 11.8%.

Keywords — Load Balancing, Task Scheduling, Internet of Things,
Cloud.

1. INTRODUCTION

Internet of Things devices have significantly influenced
the information and communication technology sector [1].
The number of devices linked is projected to reach 30 billion
by 2027, which proves the swift expansion of the IoT market.
This expansion has contributed to proliferation of IoT
applications that generate huge volumes of data with high
latency needs. The International Data Corporation (IDC)
suggests that by the year 2025, the volume of data generated
by IoT devices will be 291 ZB. Cloud computing is regarded
as one of the solutions that may effectively manage and store
the vast amounts of data produced by Internet of Things
devices due to its vast processing and storage abilities [2].

[SSN: 2584-1041

Cloud computing contributes significantly to the
successful execution of both scientific and business
processes in various industries. It offers scalability and
flexibility in pay-per-use solutions that maximize the use of
resources in varied applications. There are three broad
categories of cloud providers that include Software as a
Service (SaaS), Infrastructure as a Service (IaaS) and
Platform as a Service (PaaS).The growing user and
workloads require more effective ways of load balancing and
allocation of resources by cloud systems [3-4]. Although
such services as networking, storage and cloud computing
may be used with the same purpose, they vary in non-
functional parameters that are often referred to as QoS
(Quality of Service).

Due to the increasing complexity of cloud systems, load
balancing and efficient resource administration is emerging
as a significant issue. Many scholars have studied heuristic
algorithms and machine learning methods, and have focused
on single-objective optimization structures. An effective
cloud optimization plan should be designed to control the
system as a whole with a balanced approach to addressing
various objectives, such as cost, energy usage, performance,
and stability [5-6]. A dynamic load balancing algorithm also
maximises optimal utilisation of cloud resources, minimises
makespan and enhances cloud environment elasticity to
accelerate application run time.

A major problem with cloud computing is that it
combines several, frequently incompatible optimization
objectives. They need to optimize the usage of resources in
order to enhance system efficiency. However, it might bring
about high operating costs or slowness in responding [7].
Alternatively, to reduce response times, one may need to
invest more in some tasks. It may result in high energy usage
and low resource effectiveness. The major problem is to
come up with optimization strategy which will generate
optimal performance through balancing conflicting goals
without compromising any other goal in any way [9]. To
address these challenges, a novel Hybrid Momentum-
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Pyramid Optimization Algorithm (HMPOA) based IoT-
Cloud Scheduling Model has been proposed for efficient task
scheduling. The paper's main contributions are listed below.

e The primary goal of the research is to develop
a HMPOA based loT-Cloud Scheduling Model
to efficiently schedule and allocate IoT tasks in
a cloud environment.

The proposed method integrates Momentum
Search and Giza Pyramid Construction
methods to provide more accurate, trust, and
delay-optimized task assignment in the cloud.
The performance of the proposed method is
evaluated in terms of higher resource
utilization, throughput, energy efficiency, and
makespan compared to recent methods.

The remaining part of the paper is going to be organized
as follows: Section 2 will be the literature survey in detail,
Section 3 will be a description of the proposed HMPOA-
based IoT-Cloud Scheduling Model, Section 4 will be the
results and discussion of the proposed framework, and
Section 5 will be the conclusion and future work.

2. LITERATURE SURVEY

The concept of load balancing in cloud computing has
changed over time as the workloads of heterogeneous aspects
become more complex and the need to employ smart
scheduling techniques increases. The recent research has laid
a lot of emphasis on metaheuristics, hybrid optimization and
intelligent controllers to obtain scalable dynamic load
allocation.

In 2023 Al Reshan, M.S., et al., [9] suggested a global
optimization and rapid convergence solution to load
balancing in cloud computing. The GWO-PSO combined
approach, which optimizes the benefits of global
optimization and fast convergence for load balancing, is
heavily emphasized in the suggested strategy. The best
result of the proposed GWO-PSO algorithm objective
function is an enhancement of PSO up to 97.253% in
convergence and the total time response of the proposed
approach is 12% lower.

In 2023 Ramya, K. and Ayothi, S., [10] suggested a
Hybrid dingo and whale optimization algorithms based
optimal load balancing (HDWOA-LBM) to the cloud
computing environment. Through the simulation of dingo
hunting behaviors, which are analogous to tasks, the
HDWOA-LBM method is proposed to find the optimal way
to assign incoming tasks to the appropriate virtual machine
(VM). Simulation tests of the proposed HDWOA-LBM
method show the following results as the throughput of
21.28%, the highest reliability of 25.42, the lowest makespan
of 22.98, and the best resource allocation of 20.86% of the
intelligent load balancing are achieved.

In 2024 Ghafir, S., et al., [11] suggested Intelligent PSO-
based feedback controller to efficiently perform Load
balancing in cloud computing. This multi-objective
algorithm aims to achieve optimal bilateral transposed
convolution filtering, low response time, scalability,
throughput, and high service quality. In order to maintain
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service level agreement with the cloud, a Double Deep Q
proximal model with a feedback controller is recommended.
The conditional GAN feedback controller eliminates the
possibility of a single point of failure.

In 2024 Singhal, S., et al., [12] proposed a metaheuristic-
based cloud computing solution, a Rock Hyrax-based load
balancing algorithm overcomes local maxima and efficiency
of power. It lowers makespan and energy usage in data
centers by 10-15 percent and total energy usage by 8-13
percent, proving to be effective in enhancing the performance
of systems and improving the allocation of resources. This
algorithm is based on metaheuristics and offers a more
reliable and efficient method of allocating resources in cloud
computing.

In 2024 Khaleel, M.I., [13] proposed Region-aware
dynamic job scheduling and resource efficiency in cloud
computing environments in the context of load balancing. A
novel coalitional game-theoretic process based on merge-
and-split is used to group nodes into clusters, and an
enhanced Sparrow Search Algorithm (ISSA) is used to get
around the slow convergence and local optimization. In
contrast, the Latency overhead is decreased by 9%, the
Processing time is decreased by 14%, the workload
imbalance is decreased by 15%, the energy consumption is
decreased by 19%, the idle periods are decreased by 26%,
throughput increases by 32%, resource availability increases
by 22%, and resource efficiency increases by 27%.

In 2025 Krishna, M.S.R. and Vali, D.K., [14] suggested
Cloud computing load balancing that is dynamic and
powered by Meta reinforcement learning through a hybrid
Lyrebird Falcon optimization (Meta-RHDC). By predicting
their loads using convolutional and recurrent neural
networks, it divides virtual machines into groups that are
overloaded and underloaded. In comparison to alternative
methods, this approach significantly improves load
balancing and task scheduling. CloudSim platform tests
show significant improvements in key performance metrics,
making Meta-RHDC a leading choice for dynamic load
balancing in cloud computing.

In 2025 Hegde, S.K., et al., [15] suggested a Hybrid
Adam_Pufferfish Optimization Algorithm (AdamPOA)
Based Load Balancing in Cloud Computing. Cloud
computing (CC) provides solutions to scheduling, security,
and load balancing, especially in virtual machines (VMs). A
helpful model that has been designed to work with LB in CC
is the Adam Pufferfish Optimization Algorithm
(AdamPOA). It allocates tasks to virtual machines (VMs)
with Deep Fuzzy Clustering, optimizes cloud constraints
with hybrid AdamPOA, and allocates tasks by priority.
AdamPOA meets load, reliability, capacity, and resource
availability of 0.880, 0.915, and 0.857 respectively.

The current approaches have optimized only a few
parameters and are unable to retain accuracy when workloads
are dynamic and heterogeneous. Numerous methods
encounter such problems as slow convergence and local
minima, which minimizes the predictability of schedules.
Some of the techniques are not scalable and energy efficient
resulting in increased overhead and uneven resource usage,
to overcome these drawbacks, a novel HMPOA based IoT-
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Cloud Scheduling Model has been proposed to efficiently
schedule tasks in a cloud environment

3. PROPOSED METHODOLOGY

In this section, a novel HMPOA based IoT-Cloud
Scheduling Model has been proposed to efficiently schedule
and allocate IoT tasks in a cloud environment. Initially,
Cloud users send the data and tasks produced by IoT devices
to the cloud. The System Accessibility Layer authenticates
and validates a user request and translates the tasks into

cloudlet form. The Hybrid Momentum-Pyramid
Optimization Algorithm (HMPOA) is applied to determines
the optimal distribution of resources to each task. This
optimized plan is used by a Resource Manager to allocate
tasks to respective Virtual Machines (VMs) in the
Virtualization Layer. These VMs are deployed in the
physical infrastructure of the cloud, which is made up of
Physical Machines (PMs). The overall IoT-Cloud HMPOA
Architecture is depicted in the figure 1.
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Figure 1. IoT-Cloud HMPOA Architecture

3.1 IoT Devices and Cloud User

IoT devices and cloud users serve as data sources
generating and submitting tasks that require processing.
These tasks may include sensor readings, user requests, or
real-time application data. The input to the system is the set
of tasks which are sent to the cloud for resource allocation
and load-balanced execution.

3.2 System Accessibility Layer

The system accessibility layer is where the cloud users
can easily submit their cloudlets to be processed within the
cloud environment. This layer provides secure and efficient
communication, isolates the underlying complexity of the
cloud, and provides authentication, verification of requests,
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data formatting and transfers the tasks to the resource
manager.

Cloud Resource Manager

The cloud resource manager is also used to communicate
in order to offer the availability and computing capacity of
VMs to the HMPOA scheduler. The proposed HMPOA is
deployed over the virtualization to effectively utilize VMs in
a load-balanced fashion. This algorithm gives a balance
distribution of cloudlets among the cloud system VMs.

3.3 Scheduler

The HMPOA is a scheduling protocol that is developed
to optimize the allocation of tasks in heterogeneous VMs
within cloud computing systems. The algorithm helps to
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overcome the crucial problem of effective resource usage,
equal distribution of loads, and minimized execution times.
Using the compute ability of VMs and dynamically changing
the allocation of tasks based on workload fluctuations,
HMPOA is able to assure that tasks are allocated with the
least amount of overhead used in execution. The initial phase
makes every VM have a portion of work that matches its
strengths to facilitate fair distribution of resources.

3.3.1 Hybrid Momentum-Pyramid Optimization Algorithm
(HMPOA)

The Momentum Search Algorithm (MSA) is based on
the laws of Newton and especially the concept of momentum
conservation. Under this method, every candidate solution
will be considered a mass-based object and their interactions
will be of momentum-preserving dynamics, to lead the
search to optimal solutions. During each of the iterations, an
external body crashes itself on all solution bodies and moves
towards the best outcome. In MSA, optimum placement is
achieved by letting the external guiding body drag the
solution bodies to more favourable areas in the search space.
The positions of all the bodies are dynamically updated by
means of the functions De(t) and Dist(t), which govern the
attraction and dispersion with time. Equally, Giza Pyramids
Construction Algorithm (GPCA) is a meta-heuristic
algorithm that is based on pyramid-building strategy in the
past, as the systematic steps or stages lead the search and
exploitation of potential solutions. Just like Giza Necropolis,
the GPCA is a site that comprises of giant three pyramids;
they are all built under the fourth dynasty of ancient Egypt.
GPCA production is received with the help of pushing of the
stone slabs on the slope and labors. In such a way, the
location of one body of labors substitutes another. This
option alters the motion and strength ratio of the stone slab.
Some of the labors can also be potentially replaced during
the building process and moved elsewhere. To maximize the
Trus(t) the updating location of labors in GPCA is used. The
algorithmic process of hyb MSA-GPCA is described in the
following. The momentum search population and Giza
Pyramids Construction population are being initialized
evenly in the solution space according to the equation below

(1),
Y, gx(t") = (yf (t") + ninh cos) (1)

Where, Yj, (t") refers to the j th solution body at time
t". The gk symbol is used to denote the force of kinetic-
resistance as introduced in the GPCA model. Parameters m
and ¢ show the dimensional settings of MSA water bodies.
In the GPCA expression, n is the mass of the stone slab, k is
a coefficient of kinetic-resistance and h is the earth load,
which also indicates the slope angle of the construction ramp.

GPCA and MSA input parameters are randomly
generated after the process of initialization. In this case, there
is the maximum fitness values and selection of the superior
path depends on a fitness function. Produce the random
number of solutions based on the initial values. The trust,
delay and distance between the node are connected to the
fitness of the identical functionality. Equation (2) is the
calculation of the fitness.
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From equation (2) Di(t) is the distance between nodes,
Del(t) is the delay, Trust(t) are the trust. Fitness solutions
need to maximize trust, which also minimizes distance and
delay. Therefore, GPCA optimizes the Trus(t), Del(t) and
Dis(t) the parameter by MSA to choose the optimal path. The
important concept of GPCA is that labours cause the moving
stone slab to move forward in a continuous manner in order
to advance the capabilities of control and feasible lead of the
stone slab. These shock waves trigger the process of attaining
non-repetitive displacement on the employee through forcing
the stone slab well. Therefore, it is possible to compute the
motion of the rock on the slope as shown in equation (3),

Fitnesstaskschedulex = {[1 +

Resource (t)}

uj

Displacement of stoneslap = T mecasd)
k

3

Where 4 is the gravity of the earth, uo is the original
velocity of the stone slab. The above sentence is employed to
control the new status of the employees. Therefore, the
moment where the workers exert force to move the stone slab
can be defined as written in equation (4).

s @

Movement of workers = >
2h sinf

In where, 6 represents the ramp angle. After the changes
in the movement (trust path at lower power level) of the stone
slab and the change in position (trust path selection) of the
workers are established on equation (4) were computed, a
new location could be obtained by that of the above equations
after the above equations were subtracted. The new location
of the stone slab is calculated by summing the former
location of the stone slab and its displacement, which
depends on the movement of the workers. This new
calculated position is recorded as this adjusted point.
Therefore, the renewed poses of the stone slab and the
workers are structured and stated in Equation (5) below.

Q = (Q; + ¢) x 3, (5)

Where, Q” i denotes the present location, ¢ is the motion
of the stone slab, y represents the shift of labour, o i
represents the random variable which is described by the
Uniform and Normal distribution. This employee movement
is used to analyze the best solution that can be used now to
achieve the best global solution. This movement of workers
is employed with the aim of determining the most appropriate
solution that exists so that they can arrive at the most
appropriate global solution. This means that the trusted node
will be acquired and the deletion of the untrustworthy node.
This flow of slabs of stones is carried out to choose a trusted
node with low power values. The new position will maximize
the Trust(t), as in equation (5). In each repetition all the
solution bodies are fixed and the separate exterior body is
indicated in the space denoted exterior body. When an
interaction between one body and another takes place, it is
diverted to a more ideal position. This exchange of
momentum leads the external bodies to slow down as well as
their mass becoming minimal, and the total mass acting on
them attaining its peak. The equations (6) and (7) give the
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equivalents of computing the weight and velocity of these
external bodies respectively.

N@E) =1- (6)
@ ifs11 — _ t'—1 Cc c
VI =5 (1 T”—1)'Vbest Jmax )

where (t") is the mass solution body at time t", T"
represents the largest number of iterations. Then V (¢) j (t")
is the speed of the exterior body where c is the dimension,
and j th is the system body iteration 1 s is the random term,
Vmax is the reality of the random number, ybest c (t") and
yj ¢ (t") and the values of system body ¢ dimensions are the
best fitness of j th system body iteration. Following the
collisions, the new position is found using speed equations
(7), This demonstrates that the current status of the respective
body is defined by the ratio between its past location and its
after collision velocity. Therefore, the new position of the
body is presented as follows in Equation (8),

Y +1) =y + SUF (") ®)

The equation above Uj c (t") represents the updating of
position of system speed with ¢ dimension and j th system
body iteration at t" one of the two values and s2 is randomly
distributed unchanged term in the range of [0, 1]. Using
equation (8), the new position will be the one that minimizes
the De(t) and Dis(t). The process is applied repeatedly in
Equations (6) to (7) until the desired requirements are met at
which the process is stopped once the optimal solution is
found. Optimal path at minimum distance and minimum
delay will be given as final equations. The hyb - MSA-GPC
algorithm output provides an optimal path which continues
to reiterate step 3 until halting criteria = + 1. The best of the
ways, trust, transmits the information to BS.

3.4 Cloud Physical Layer

The physical and virtual layers provide Cloud users with
Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service
(PaaS). The computing, memory, and storage hardware that
comprise the physical machines (PMs) of the total computing
capacity of the datacenter constitute the physical layer. The
machines are commonly referred to as PM1, PM2, ... PMN.

3.5 Virtualization Layer

Virtualization layer provides computing and storage
capabilities to the cloud users in a transparent mode by
dynamically assigning these capabilities to the virtual
machines (VMs). The cloud resource manager is located
above this layer, and its main responsibility is to manage the
lifecycle of VMs such as their creation, deletion, and
movement whenever the computing needs of the system
necessitate such activities.

4. RESULT AND DISCUSSION

This part will show the cloud computing model setup
and also defines the datasets that were used in the
experimental analysis. The software is run on an Intel
CoreTM i5- 4030U 1.90 GHz 2.49 GHz 12 GB of RAM
computing machine. HMPOA 1is evaluated through its
performance in simulation, with the Cloud Simplus
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simulator. Experimental assessment is conducted on 17 to 60
virtual machines that are deployed on 40 cloud host systems.
The different instances of the GoCJ dataset are run by way
of the VM configurations, which have their MIPS (Millions
of Instructions Per Second) ratings. GoCJ dataset covers a
great variety of job types: small, medium, large, extra-large
and massive jobs. These jobs are arranged and classified in
the dataset in accordance with their sizes and their
computation complexities.

4.1 Performance Metrics

The proposed model is compared with the existing
techniques such as HDWOA-LBM, Meta-RHDC, and
APOA in terms of resource utilization, throughput and
energy consumption.

Resource Utilization: It shows the efficiency with which the
cloud resources (CPU, memory, VMs) are utilized when
performing a task.

Total used resources

RU(%) = ( ) x 100%

total available resources

Throughput: This is the amount of tasks that the system can
complete in a time period.

_ No.of tasks executed successfully

total execution time

Energy Consumption: It is the overall energy that is
consumed by cloud physical machine and virtual machines
to perform tasks.

EC = Z?:lpi X Ti
4.2 Comparative Analysis

Makespan is a performance measure used in scheduling,
job management that is the sum of time necessary to
complete a set of tasks, beginning with the start of the initial
task and ending with the completion of the final task. It is
useful in quantifying the overall productivity of a system in
terms of workload management. The importance of
minimizing makespan is as follows: it leads to utilization of
resources optimally, as idle times are minimized, the entire
system throughput is maximized, tasks are fulfilled faster and
user satisfaction increases due to the fact that the service
level agreements (SLAs) were met or surpassed.

Table 1. Resource Utilization with 30 VMs

Number | HDWOA- | Meta- APOA | Proposed
of LBM [10] | RHDC [15] (%)
Tasks (%) [14] (%) (%)
1000 64.21 68.32 71.45 75.88
2000 66.87 70.55 74.29 78.64
3000 69.13 73.02 76.45 80.91
4000 70.54 74.88 78.23 82.30
5000 72.01 76.31 79.60 84.77

Table 2. Resource Utilization with 45 VMs
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Number | HDWOQOA- | Meta- | APOA | Proposed
of Tasks | LBM [10] | RHDC [15] (%)
(%) [14] (%)
(%)
1200 65.88 69.45 72.80 76.93
2200 68.12 72.03 75.56 79.28
3200 70.44 74.67 77.94 81.62
4200 72.31 76.11 79.41 83.20
5200 73.90 77.69 80.63 85.47
Table 3. Resource Utilization with 60 VMs
Number | HDWOA- | Meta- | APOA | Proposed
of Tasks | LBM [10] | RHDC [15] (%)
(%) [14] (%0)
(%)
1500 66.34 70.02 73.50 77.45
2500 68.91 72.58 76.00 79.88
3500 71.55 75.13 78.32 82.25
4500 73.42 76.95 80.13 84.66
5500 75.10 78.80 81.47 86.90

Resource utilization reflects the effectiveness with
which available computational resources are consumed. It is
typically calculated by comparing the amount of resources in
use to the overall capacity of the system. Achieving higher
utilization promotes better workload distribution, minimizes
idle resources, and improves overall system performance by
reducing potential bottlenecks.

2501 o HDWOA-LBM [10]

Meta-RHDC [14]
—— APOA [15]
—— Proposed

Throughput (Kbps)
- - X
o ai =3
(=] o (=]

w
=]

75 100 125 150 175

Number of tasks

50 200

Figure 2. Throughput Comparison

Figure 2 shows the relationship between the number of
tasks and throughput (Kbps) for four scheduling methods
such as HDWOA-LBM, Meta-RHDC, APOA, and the
Proposed method. The throughput level increases steadily
with the amount of tasks in each method, and this shows that
they can handle data better when workloads are heavier. The
Proposed approach is the highest throughput at all the levels
of tasks, with a maximum of almost 250 Kbps at 200 tasks.
While, HDWOA-LBM had the lowest throughput across the
observed range. In general, the findings provide clear
evidence that the Proposed method is better in terms of
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scalability and efficiency in comparison with current
methods.

= [HDWOA LBM [10]
Meta-RHDC [14]

W APOA[15]

B Proposed

[¥] w w
[ =4 o

Energy Consumption (%)
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[=]

50 100 150 200 250 300

Number of Tasks

Figure 3. Energy Consumption

350 400

Figure 3 shows the comparisons between the four load-
balancing strategies, including HDWOA-LBM, Meta-
RHDC, APOA, and the Proposed method, in terms of the
increasing numbers of tasks. When the number of tasks
increases to 500, every method exhibits increased energy
consumption because of the increased computational needs.
Nevertheless, the Proposed method always shows the
minimum energy usage at all task levels, which suggests
better resource use. Conversely, APOA and Meta-RHDC
have the most energy consumption, particularly after 250
tasks, and less energy efficiency is demonstrated at a higher
workload. HDWOA-LBM has a moderate score, yet it
consumes more energy than the Proposed model.

5. CONCLUSION

In this paper, a novel HMPOA based IoT-Cloud
Scheduling Model has been proposed to efficiently schedule
and allocate IoT tasks in a cloud environment. This integrates
Momentum Search and Giza Pyramid Construction methods
to provide more accurate, trust, and delay-optimized task
assignment in the cloud. The performance of the proposed
method is evaluated in terms of higher resource utilization,
throughput, energy efficiency, and makespan compared to
recent methods such as HDWOA-LBM, Meta-RHDC, and
APOA. The simulation experiment was done using cloud sim
Plus with GoCJ dataset. The numerical results show that, at
30 VMs, the proposed method has 84.77% utilization, 5-12%
more than APOA, Meta-RHDC, and HDWOA-LBM.
Similarly, at 60VMs, the proposed method achieves high
scalability 86.90%, compared to APOA of 5.43%, and
HDWOA-LBM of 11.8%. The HMPOA algorithm can have
computational overhead in processing very large-scale IoT
workloads because of its hybrid form. Thus, future research
can aim to create lightweight or parallelized HMPOA
versions to decrease complexity and increase responsiveness
to massive loT settings.

CONFLICTS OF INTEREST

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

FUNDING STATEMENT



Faeiz Alserhani et al. / IJDSAI 03(5), 166-172, 2025

This research received no specific grant from any
funding agency in the public, commercial, or not-for-profit
sectors

ACKNOWLEDGEMENTS

The author would like to express his heartfelt gratitude
to the supervisor for his guidance and unwavering support
during this research for his guidance and support.

REFERENCES

[1] U. K. Lilhore, S. Simaiya, Y. N. Prajapati, A. K. Rai, E. S.
Ghith, M. Tlijja, T. Lamoudan, and A. A. Abdelhamid, “A
multi-objective approach to load balancing in cloud
environments integrating ACO and WWO techniques,”
Scientific Reports, vol. 15, no. 1, p. 12036, 2025. [CrossRef]
[Google Scholar] [Publisher Link]

M. Ghorbani, N. Khaledian, and S. Moazzami, “ALBLA: an

adaptive load balancing approach in edge-cloud networks

utilizing learning automata,” Computing, vol. 107, no. 1, p. 34,

2025. [CrossRef] [Google Scholar] [Publisher Link]

A. R. Khan, “Dynamic load balancing in cloud computing:

optimized RL-based clustering with multi-objective optimized

task scheduling,” Processes, vol. 12, no. 3, p. 519, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

G. Verma, “Load balancing in cloud environment using

pposition based spider monkey optimization,” Wireless

Personal Communications, vol. 137, no. 2, pp. 977-996, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

A. Khunger, “Fault-Tolerant Load Balancing In Cloud-Based

Financial Analytics: A Reinforcement Learning Approach,”

International Journal of Innovation Studies, 2023. [CrossRef]

[Google Scholar] [Publisher Link]

K. D. S. Devi, D. Sumathi, V. Vignesh, C. Anilkumar, K.

Kataraki, and S. Balakrishnan, “CLOUD load balancing for

storing the internet of things using deep load balancer with

enhanced security,” Measurement: Sensors, vol. 28, p. 100818,

2023. [CrossRef] [Google Scholar] [Publisher Link]

G. Saranya, G. B. Jebamalar, and C. Santhaiah, “Dynamic load

balancing in cloud computing using hybrid Kookaburra-

Pelican optimization algorithms,” International Journal of

Data Science and Artificial Intelligence, vol. 2, no. 4, pp. 98—

104, 2024. [CrossRef] [Google Scholar] [Publisher Link]

M. Jesi, A. Appathurai, M. Narayanaperumal, and A. Kumar,

“Load balancing in cloud computing via mayfly optimization

algorithm,” Revue Roumaine des Sciences Techniques — Série

Electrotechnique et Energétique, vol. 69, no. 1, pp. 79-84,

2024. [CrossRef] [Google Scholar] [Publisher Link]

M. S. Al Reshan, D. Syed, N. Islam, A. Shaikh, M. Hamdi, M.

A. Elmagzoub, G. Muhammad, and K. H. Talpur, “A fast

converging and globally optimized approach for load

balancing in cloud computing,” [EEE Access, vol. 11, pp.

11390-11404, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[10] K. Ramya and S. Ayothi, “Hybrid dingo and whale
optimization algorithm-based optimal load balancing for cloud
computing environment,” Transactions on Emerging
Telecommunications Technologies, vol. 34, no. 5, p. e4760,
2023. [CrossRef] [Google Scholar] [Publisher Link]

172

[11] S. Ghafir, M. A. Alam, F. Siddiqui, and S. Naaz, “Load
balancing in cloud computing via intelligent PSO-based
feedback controller,” Sustainable Computing: Informatics and
Systems, vol. 41, p. 100948, 2024. [CrossRef] [Google
Scholar] [Publisher Link]

[12] S. Singhal et al., “Energy efficient load balancing algorithm for
cloud computing using rock hyrax optimization,” [EEE
Access, vol. 12, pp. 48737-48749, 2024. [CrossRef] [Google
Scholar] [Publisher Link]

[13] M. 1. Khaleel, “Region-aware dynamic job scheduling and
resource efficiency for load balancing based on adaptive
chaotic sparrow search optimization and coalitional game in
cloud computing environments,” Journal of Network and
Computer Applications, vol. 221, p. 103788, 2024. [CrossRef]
[Google Scholar] [Publisher Link]

[14] M. S. R. Krishna and D. K. Vali, “Meta-RHDC: Meta
reinforcement learning driven hybrid lyrebird Falcon
optimization for dynamic load balancing in cloud computing,”
IEEE Access, vol. 13, pp. 36550-36574, 2025. [CrossRef]
[Google Scholar] [Publisher Link]

[15] S. K. Hegde, R. Hegde, C. N. Kumar, R. Meenakshi, R.
Raman, and G. M. Jayaseelan, “Hybrid Adam_POA: Hybrid
Adam_Pufferfish optimization algorithm based load balancing
in cloud computing,” SN Computer Science, vol. 6, no. 2, p.
178, 2025. [CrossRef] [Google Scholar] [Publisher Link]

AUTHORS

Faeiz Alserhani, Received his Bachelor's degree in
Computer Engineering from King Saud University,
Riyadh, SA, an M.S degree in Computer and
Information Networks from the University of Essex,
UK, and a Ph.D. degree in Network and Information
Security from the University of Bradford, UK. He is
a professor assistant at the Department of Computer
Engineering and Networks at Jouf University, SA.
His interests cover several aspects across Network
Security, cyber security, Intrusion Detection Systems, and the Application
of Al in Cybersecurity

<

Amjad Alsirhani is an Associate Professor at the
Faculty of Computer Science, Jouf University, where
he serves as the Head of the Software Engineering
Department. He earned his bachelor’s degree in
computer science from Jouf University, followed by
advanced studies at Dalhousie University in Canada,
where he was awarded both a Master of Computer

Science (M.C.S.) in 2015 and a Ph.D. in 2020. His
1 academic journey has been marked by a strong
commitment to both research and teaching. In addition to his role at Jouf
University, Dr. ALSIRHANI holds an Adjunct Professor position at
Dalhousie University, maintaining an active academic collaboration
between the two institutions. Dr. ALSIRHANI's research interests span a
wide array of topics in the field of computing, including Cybersecurity,
Network Security, Cloud Computing Security, Distributed Computing
Systems, as well as Machine Learning and Deep Learning. His work
explores innovative approaches to enhance data protection and system
resilience in these fields.


https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479
https://doi.org/10.1016/j.pmcj.2018.02.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09A.+Kaswan%2C+V.+Singh%2C+and+P.+K.+Jana%2C+%E2%80%9CA+multi-objective+and+PSO+based+energy+efficient+path+design+for+mobile+sink+in+wireless+sensor+networks%2C%E2%80%9D+Pervasive+Mob.+Comput.%2C+46%2C+122-136%2C+2018.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1574119217304479

