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Abstract – The massive growth of IoT-based data has increased 

the necessity to schedule the tasks effectively and distribute the 

resources in the cloud environment efficiently. Conventional 

cloud load-balancing approaches are usually incapable of 

handling diverse workloads, ensuring high resource 

underutilization, and reducing delays in dynamic operating 

environments. To overcome such obstacles, the paper proposes 

a Hybrid Momentum-Pyramid Optimization Algorithm 

(HMPOA) based IoT-Cloud Scheduling Model that combines 

the features of Momentum Search Algorithm (MSA) and Giza 

Pyramid Construction Algorithm (GPCA). The main objective 

is to efficiently schedule and allocate IoT tasks in a cloud 

environment. The proposed method maximizes trust, delay and 

distance metrics to determine optimal execution paths and 

assign tasks evenly across the virtual machines. The 

performance of the proposed method is evaluated in terms of 

higher resource utilization, throughput, energy efficiency, and 

makespan compared to recent methods. The numerical results 

show that, at 30 VMs, the proposed method has 84.77% 

utilization, 5-12% more than APOA, Meta-RHDC, and 

HDWOA-LBM. Similarly, at 60VMs, the proposed method 

achieves high scalability 86.90%, compared to APOA of 5.43%, 

and HDWOA-LBM of 11.8%. 

Keywords – Load Balancing, Task Scheduling, Internet of Things, 

Cloud. 

1. INTRODUCTION 

Internet of Things devices have significantly influenced 

the information and communication technology sector [1]. 

The number of devices linked is projected to reach 30 billion 

by 2027, which proves the swift expansion of the IoT market. 

This expansion has contributed to proliferation of IoT 

applications that generate huge volumes of data with high 

latency needs. The International Data Corporation (IDC) 

suggests that by the year 2025, the volume of data generated 

by IoT devices will be 291 ZB. Cloud computing is regarded 

as one of the solutions that may effectively manage and store 

the vast amounts of data produced by Internet of Things 

devices due to its vast processing and storage abilities [2]. 

Cloud computing contributes significantly to the 

successful execution of both scientific and business 

processes in various industries. It offers scalability and 

flexibility in pay-per-use solutions that maximize the use of 

resources in varied applications. There are three broad 

categories of cloud providers that include Software as a 

Service (SaaS), Infrastructure as a Service (IaaS) and 

Platform as a Service (PaaS).The growing user and 

workloads require more effective ways of load balancing and 

allocation of resources by cloud systems [3-4]. Although 

such services as networking, storage and cloud computing 

may be used with the same purpose, they vary in non-

functional parameters that are often referred to as QoS 

(Quality of Service). 

Due to the increasing complexity of cloud systems, load 

balancing and efficient resource administration is emerging 

as a significant issue. Many scholars have studied heuristic 

algorithms and machine learning methods, and have focused 

on single-objective optimization structures. An effective 

cloud optimization plan should be designed to control the 

system as a whole with a balanced approach to addressing 

various objectives, such as cost, energy usage, performance, 

and stability [5-6]. A dynamic load balancing algorithm also 

maximises optimal utilisation of cloud resources, minimises 

makespan and enhances cloud environment elasticity to 

accelerate application run time. 

A major problem with cloud computing is that it 

combines several, frequently incompatible optimization 

objectives. They need to optimize the usage of resources in 

order to enhance system efficiency. However, it might bring 

about high operating costs or slowness in responding [7]. 

Alternatively, to reduce response times, one may need to 

invest more in some tasks. It may result in high energy usage 

and low resource effectiveness. The major problem is to 

come up with optimization strategy which will generate 

optimal performance through balancing conflicting goals 

without compromising any other goal in any way [9]. To 

address these challenges, a novel Hybrid Momentum-
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Pyramid Optimization Algorithm (HMPOA) based IoT-

Cloud Scheduling Model has been proposed for efficient task 

scheduling. The paper's main contributions are listed below. 

• The primary goal of the research is to develop 

a HMPOA based IoT-Cloud Scheduling Model 

to efficiently schedule and allocate IoT tasks in 

a cloud environment. 

• The proposed method integrates Momentum 

Search and Giza Pyramid Construction 

methods to provide more accurate, trust, and 

delay-optimized task assignment in the cloud. 

• The performance of the proposed method is 

evaluated in terms of higher resource 

utilization, throughput, energy efficiency, and 

makespan compared to recent methods. 

The remaining part of the paper is going to be organized 

as follows: Section 2 will be the literature survey in detail, 

Section 3 will be a description of the proposed HMPOA-

based IoT-Cloud Scheduling Model, Section 4 will be the 

results and discussion of the proposed framework, and 

Section 5 will be the conclusion and future work. 

2. LITERATURE SURVEY 

The concept of load balancing in cloud computing has 

changed over time as the workloads of heterogeneous aspects 

become more complex and the need to employ smart 

scheduling techniques increases. The recent research has laid 

a lot of emphasis on metaheuristics, hybrid optimization and 

intelligent controllers to obtain scalable dynamic load 

allocation. 

In 2023 Al Reshan, M.S., et al., [9] suggested a global 

optimization and rapid convergence solution to load 

balancing in cloud computing. The GWO-PSO combined 

approach, which optimizes the benefits of global 

optimization and fast convergence for load balancing, is 

heavily emphasized in the suggested strategy.   The best 

result of the proposed GWO-PSO algorithm objective 

function is an enhancement of PSO up to 97.253% in 

convergence and the total time response of the proposed 

approach is 12% lower. 

In 2023 Ramya, K. and Ayothi, S., [10] suggested a 

Hybrid dingo and whale optimization algorithms based 

optimal load balancing (HDWOA-LBM) to the cloud 

computing environment. Through the simulation of dingo 

hunting behaviors, which are analogous to tasks, the 

HDWOA-LBM method is proposed to find the optimal way 

to assign incoming tasks to the appropriate virtual machine 

(VM). Simulation tests of the proposed HDWOA-LBM 

method show the following results as the throughput of 

21.28%, the highest reliability of 25.42, the lowest makespan 

of 22.98, and the best resource allocation of 20.86% of the 

intelligent load balancing are achieved. 

In 2024 Ghafir, S., et al., [11] suggested Intelligent PSO-

based feedback controller to efficiently perform Load 

balancing in cloud computing. This multi-objective 

algorithm aims to achieve optimal bilateral transposed 

convolution filtering, low response time, scalability, 

throughput, and high service quality.   In order to maintain 

service level agreement with the cloud, a Double Deep Q 

proximal model with a feedback controller is recommended.   

The conditional GAN feedback controller eliminates the 

possibility of a single point of failure. 

In 2024 Singhal, S., et al., [12] proposed a metaheuristic-

based cloud computing solution, a Rock Hyrax-based load 

balancing algorithm overcomes local maxima and efficiency 

of power. It lowers makespan and energy usage in data 

centers by 10-15 percent and total energy usage by 8-13 

percent, proving to be effective in enhancing the performance 

of systems and improving the allocation of resources. This 

algorithm is based on metaheuristics and offers a more 

reliable and efficient method of allocating resources in cloud 

computing. 

In 2024 Khaleel, M.I., [13] proposed Region-aware 

dynamic job scheduling and resource efficiency in cloud 

computing environments in the context of load balancing. A 

novel coalitional game-theoretic process based on merge-

and-split is used to group nodes into clusters, and an 

enhanced Sparrow Search Algorithm (ISSA) is used to get 

around the slow convergence and local optimization. In 

contrast, the Latency overhead is decreased by 9%, the 

Processing time is decreased by 14%, the workload 

imbalance is decreased by 15%, the energy consumption is 

decreased by 19%, the idle periods are decreased by 26%, 

throughput increases by 32%, resource availability increases 

by 22%, and resource efficiency increases by 27%. 

In 2025 Krishna, M.S.R. and Vali, D.K., [14] suggested 

Cloud computing load balancing that is dynamic and 

powered by Meta reinforcement learning through a hybrid 

Lyrebird Falcon optimization (Meta-RHDC).    By predicting 

their loads using convolutional and recurrent neural 

networks, it divides virtual machines into groups that are 

overloaded and underloaded.   In comparison to alternative 

methods, this approach significantly improves load 

balancing and task scheduling.   CloudSim platform tests 

show significant improvements in key performance metrics, 

making Meta-RHDC a leading choice for dynamic load 

balancing in cloud computing. 

In 2025 Hegde, S.K., et al., [15] suggested a Hybrid 

Adam_Pufferfish Optimization Algorithm (AdamPOA) 

Based Load Balancing in Cloud Computing. Cloud 

computing (CC) provides solutions to scheduling, security, 

and load balancing, especially in virtual machines (VMs). A 

helpful model that has been designed to work with LB in CC 

is the Adam_Pufferfish Optimization Algorithm 

(AdamPOA). It allocates tasks to virtual machines (VMs) 

with Deep Fuzzy Clustering, optimizes cloud constraints 

with hybrid AdamPOA, and allocates tasks by priority. 

AdamPOA meets load, reliability, capacity, and resource 

availability of 0.880, 0.915, and 0.857 respectively. 

The current approaches have optimized only a few 

parameters and are unable to retain accuracy when workloads 

are dynamic and heterogeneous. Numerous methods 

encounter such problems as slow convergence and local 

minima, which minimizes the predictability of schedules. 

Some of the techniques are not scalable and energy efficient 

resulting in increased overhead and uneven resource usage, 

to overcome these drawbacks, a novel HMPOA based IoT-
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Cloud Scheduling Model has been proposed to efficiently 

schedule tasks in a cloud environment 

3. PROPOSED METHODOLOGY 

In this section, a novel HMPOA based IoT-Cloud 

Scheduling Model has been proposed to efficiently schedule 

and allocate IoT tasks in a cloud environment. Initially, 

Cloud users send the data and tasks produced by IoT devices 

to the cloud. The System Accessibility Layer authenticates 

and validates a user request and translates the tasks into 

cloudlet form. The Hybrid Momentum-Pyramid 

Optimization Algorithm (HMPOA) is applied to determines 

the optimal distribution of resources to each task. This 

optimized plan is used by a Resource Manager to allocate 

tasks to respective Virtual Machines (VMs) in the 

Virtualization Layer. These VMs are deployed in the 

physical infrastructure of the cloud, which is made up of 

Physical Machines (PMs). The overall IoT-Cloud HMPOA 

Architecture is depicted in the figure 1.  

 

Figure 1. IoT-Cloud HMPOA Architecture 

3.1 IoT Devices and Cloud User 

IoT devices and cloud users serve as data sources 

generating and submitting tasks that require processing. 

These tasks may include sensor readings, user requests, or 

real-time application data. The input to the system is the set 

of tasks which are sent to the cloud for resource allocation 

and load-balanced execution. 

3.2 System Accessibility Layer 

The system accessibility layer is where the cloud users 

can easily submit their cloudlets to be processed within the 

cloud environment. This layer provides secure and efficient 

communication, isolates the underlying complexity of the 

cloud, and provides authentication, verification of requests, 

data formatting and transfers the tasks to the resource 

manager. 

Cloud Resource Manager 

The cloud resource manager is also used to communicate 

in order to offer the availability and computing capacity of 

VMs to the HMPOA scheduler. The proposed HMPOA is 

deployed over the virtualization to effectively utilize VMs in 

a load-balanced fashion. This algorithm gives a balance 

distribution of cloudlets among the cloud system VMs. 

3.3 Scheduler 

The HMPOA is a scheduling protocol that is developed 

to optimize the allocation of tasks in heterogeneous VMs 

within cloud computing systems. The algorithm helps to 
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overcome the crucial problem of effective resource usage, 

equal distribution of loads, and minimized execution times. 

Using the compute ability of VMs and dynamically changing 

the allocation of tasks based on workload fluctuations, 

HMPOA is able to assure that tasks are allocated with the 

least amount of overhead used in execution. The initial phase 

makes every VM have a portion of work that matches its 

strengths to facilitate fair distribution of resources. 

3.3.1 Hybrid Momentum-Pyramid Optimization Algorithm 

(HMPOA) 

The Momentum Search Algorithm (MSA) is based on 

the laws of Newton and especially the concept of momentum 

conservation. Under this method, every candidate solution 

will be considered a mass-based object and their interactions 

will be of momentum-preserving dynamics, to lead the 

search to optimal solutions. During each of the iterations, an 

external body crashes itself on all solution bodies and moves 

towards the best outcome. In MSA, optimum placement is 

achieved by letting the external guiding body drag the 

solution bodies to more favourable areas in the search space. 

The positions of all the bodies are dynamically updated by 

means of the functions 𝐷𝑒(𝑡) and 𝐷𝑖𝑠𝑡(𝑡), which govern the 

attraction and dispersion with time. Equally, Giza Pyramids 

Construction Algorithm (GPCA) is a meta-heuristic 

algorithm that is based on pyramid-building strategy in the 

past, as the systematic steps or stages lead the search and 

exploitation of potential solutions. Just like Giza Necropolis, 

the GPCA is a site that comprises of giant three pyramids; 

they are all built under the fourth dynasty of ancient Egypt. 

GPCA production is received with the help of pushing of the 

stone slabs on the slope and labors. In such a way, the 

location of one body of labors substitutes another. This 

option alters the motion and strength ratio of the stone slab. 

Some of the labors can also be potentially replaced during 

the building process and moved elsewhere. To maximize the 

𝑇𝑟𝑢𝑠(𝑡) the updating location of labors in GPCA is used. The 

algorithmic process of hyb MSA-GPCA is described in the 

following. The momentum search population and Giza 

Pyramids Construction population are being initialized 

evenly in the solution space according to the equation below 

(1), 

   𝑌𝑗 , 𝑔𝑘(𝑡
′′) = (𝑦𝑗

𝑐(𝑡′′) + 𝜂𝑘𝑛ℎ 𝑐𝑜𝑠𝜃)                               (1)                                                 

Where, 𝑌𝑗, (𝑡") refers to the  𝑗 𝑡ℎ solution body at time 

𝑡". The 𝑔𝑘 symbol is used to denote the force of kinetic-

resistance as introduced in the GPCA model. Parameters m 

and c show the dimensional settings of MSA water bodies. 

In the GPCA expression, n is the mass of the stone slab, k is 

a coefficient of kinetic-resistance and h is the earth load, 

which also indicates the slope angle of the construction ramp. 

GPCA and MSA input parameters are randomly 

generated after the process of initialization. In this case, there 

is the maximum fitness values and selection of the superior 

path depends on a fitness function. Produce the random 

number of solutions based on the initial values. The trust, 

delay and distance between the node are connected to the 

fitness of the identical functionality. Equation (2) is the 

calculation of the fitness. 

   𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑡𝑎𝑠𝑘𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑥 = {[1 +
𝐷𝑒𝑙(𝑡)

𝐷𝑒𝑙𝑛𝑜𝑟𝑚
] + [1 −

𝐷𝑖𝑠(𝑡)

𝑋𝑛∗𝐵∗𝑀
] +

𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒(𝑡)}                                                                     (2) 

From equation (2) 𝐷𝑖(𝑡) is the distance between nodes, 

𝐷𝑒𝑙(𝑡) is the delay, 𝑇𝑟𝑢𝑠𝑡(𝑡) are the trust. Fitness solutions 

need to maximize trust, which also minimizes distance and 

delay. Therefore, GPCA optimizes the 𝑇𝑟𝑢𝑠(𝑡), 𝐷𝑒𝑙(𝑡) and 

𝐷𝑖𝑠(𝑡) the parameter by MSA to choose the optimal path. The 

important concept of GPCA is that labours cause the moving 

stone slab to move forward in a continuous manner in order 

to advance the capabilities of control and feasible lead of the 

stone slab. These shock waves trigger the process of attaining 

non-repetitive displacement on the employee through forcing 

the stone slab well. Therefore, it is possible to compute the 

motion of the rock on the slope as shown in equation (3), 

   𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑡𝑜𝑛𝑒𝑠𝑙𝑎𝑝 =
𝑢𝑜

2

2ℎ(𝑠𝑖𝑛𝜃+𝜂𝑘𝑐𝑜𝑠𝜃)
      (3)                           

Where ℎ is the gravity of the earth, 𝑢𝑜 is the original 

velocity of the stone slab. The above sentence is employed to 

control the new status of the employees. Therefore, the 

moment where the workers exert force to move the stone slab 

can be defined as written in equation (4). 

  𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑤𝑜𝑟𝑘𝑒𝑟𝑠 =
𝑢𝑜

2

2ℎ 𝑠𝑖𝑛𝜃
                                            (4) 

In where,  represents the ramp angle. After the changes 

in the movement (trust path at lower power level) of the stone 

slab and the change in position (trust path selection) of the 

workers are established on equation (4) were computed, a 

new location could be obtained by that of the above equations 

after the above equations were subtracted. The new location 

of the stone slab is calculated by summing the former 

location of the stone slab and its displacement, which 

depends on the movement of the workers. This new 

calculated position is recorded as this adjusted point. 

Therefore, the renewed poses of the stone slab and the 

workers are structured and stated in Equation (5) below. 

    𝑄⃗ = (𝑄⃗ 𝑖 + 𝑐) × 𝑦𝜎 𝑖                                                      (5) 

Where, 𝑄  𝑖 denotes the present location, c is the motion 

of the stone slab, 𝑦 represents the shift of labour, 𝜎 𝑖 
represents the random variable which is described by the 

Uniform and Normal distribution. This employee movement 

is used to analyze the best solution that can be used now to 

achieve the best global solution. This movement of workers 

is employed with the aim of determining the most appropriate 

solution that exists so that they can arrive at the most 

appropriate global solution. This means that the trusted node 

will be acquired and the deletion of the untrustworthy node. 

This flow of slabs of stones is carried out to choose a trusted 

node with low power values. The new position will maximize 

the 𝑇𝑟𝑢𝑠𝑡(𝑡), as in equation (5). In each repetition all the 

solution bodies are fixed and the separate exterior body is 

indicated in the space denoted exterior body. When an 

interaction between one body and another takes place, it is 

diverted to a more ideal position. This exchange of 

momentum leads the external bodies to slow down as well as 

their mass becoming minimal, and the total mass acting on 

them attaining its peak. The equations (6) and (7) give the 
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equivalents of computing the weight and velocity of these 

external bodies respectively. 

  𝑁(𝑡′′) = 1 −
𝑡′′−1

𝑇′′−1
                                                           (6) 

𝑉(𝑐)𝑗(𝑡′′) = 𝑆1. (1 −
𝑡′′−1

𝑇′′−1
) . 𝑉

𝑐
𝑏𝑒𝑠𝑡

 
𝑐

𝑗𝑚𝑎𝑥
                           (7)                   

where (𝑡") is the mass solution body at time 𝑡", 𝑇" 

represents the largest number of iterations. Then 𝑉 (𝑐) 𝑗 (𝑡") 

is the speed of the exterior body where 𝑐 is the dimension, 

and 𝑗 𝑡ℎ is the system body iteration 1 s is the random term, 

𝑉𝑚𝑎𝑥 is the reality of the random number, 𝑦𝑏𝑒𝑠𝑡 𝑐 (𝑡") 𝑎𝑛𝑑 

𝑦𝑗 𝑐 (𝑡") and the values of system body c dimensions are the 

best fitness of 𝑗 𝑡ℎ system body iteration. Following the 

collisions, the new position is found using speed equations 

(7), This demonstrates that the current status of the respective 

body is defined by the ratio between its past location and its 

after collision velocity. Therefore, the new position of the 

body is presented as follows in Equation (8), 

    𝑦𝑗
𝑐(𝑡′′ + 1) = 𝑦𝑗

(𝑐)(𝑡′′) + 𝑆2𝑈𝑗
𝑐(𝑡′′)                                        (8) 

The equation above 𝑈𝑗 𝑐 (𝑡") represents the updating of 

position of system speed with c dimension and 𝑗 𝑡ℎ system 

body iteration at 𝑡" one of the two values and 𝑠2 is randomly 

distributed unchanged term in the range of [0, 1]. Using 

equation (8), the new position will be the one that minimizes 

the 𝐷𝑒(𝑡) 𝑎𝑛𝑑 𝐷𝑖𝑠(𝑡). The process is applied repeatedly in 

Equations (6) to (7) until the desired requirements are met at 

which the process is stopped once the optimal solution is 

found. Optimal path at minimum distance and minimum 

delay will be given as final equations. The hyb - MSA-GPC 

algorithm output provides an optimal path which continues 

to reiterate step 3 until halting criteria = + 1. The best of the 

ways, trust, transmits the information to BS. 

3.4 Cloud Physical Layer 

The physical and virtual layers provide Cloud users with 

Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service 

(PaaS). The computing, memory, and storage hardware that 

comprise the physical machines (PMs) of the total computing 

capacity of the datacenter constitute the physical layer. The 

machines are commonly referred to as PM1, PM2, ... PMN. 

3.5 Virtualization Layer 

Virtualization layer provides computing and storage 

capabilities to the cloud users in a transparent mode by 

dynamically assigning these capabilities to the virtual 

machines (VMs). The cloud resource manager is located 

above this layer, and its main responsibility is to manage the 

lifecycle of VMs such as their creation, deletion, and 

movement whenever the computing needs of the system 

necessitate such activities.  

4. RESULT AND DISCUSSION 

This part will show the cloud computing model setup 

and also defines the datasets that were used in the 

experimental analysis. The software is run on an Intel 

CoreTM i5- 4030U 1.90 GHz 2.49 GHz 12 GB of RAM 

computing machine. HMPOA is evaluated through its 

performance in simulation, with the Cloud Simplus 

simulator. Experimental assessment is conducted on 17 to 60 

virtual machines that are deployed on 40 cloud host systems. 

The different instances of the GoCJ dataset are run by way 

of the VM configurations, which have their MIPS (Millions 

of Instructions Per Second) ratings. GoCJ dataset covers a 

great variety of job types: small, medium, large, extra-large 

and massive jobs. These jobs are arranged and classified in 

the dataset in accordance with their sizes and their 

computation complexities. 

4.1 Performance Metrics 

The proposed model is compared with the existing 

techniques such as HDWOA-LBM, Meta-RHDC, and 

APOA in terms of resource utilization, throughput and 

energy consumption. 

Resource Utilization: It shows the efficiency with which the 

cloud resources (CPU, memory, VMs) are utilized when 

performing a task. 

𝑅𝑈(%) = (
𝑇𝑜𝑡𝑎𝑙 𝑢𝑠𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
) × 100% 

Throughput: This is the amount of tasks that the system can 

complete in a time period. 

𝑇 =
𝑁𝑜. 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦

𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒
 

Energy Consumption: It is the overall energy that is 

consumed by cloud physical machine and virtual machines 

to perform tasks.  

𝐸𝐶 = ∑ 𝑃𝑖 × 𝑇𝑖
𝑛
𝑖=1   

4.2 Comparative Analysis 

Makespan is a performance measure used in scheduling, 

job management that is the sum of time necessary to 

complete a set of tasks, beginning with the start of the initial 

task and ending with the completion of the final task. It is 

useful in quantifying the overall productivity of a system in 

terms of workload management. The importance of 

minimizing makespan is as follows: it leads to utilization of 

resources optimally, as idle times are minimized, the entire 

system throughput is maximized, tasks are fulfilled faster and 

user satisfaction increases due to the fact that the service 

level agreements (SLAs) were met or surpassed. 

Table 1. Resource Utilization with 30 VMs 

Number 

of 

Tasks 

HDWOA-

LBM [10] 

(%) 

Meta-

RHDC 

[14] (%) 

APOA 

[15] 

(%) 

Proposed 

(%) 

1000 64.21 68.32 71.45 75.88 

2000 66.87 70.55 74.29 78.64 

3000 69.13 73.02 76.45 80.91 

4000 70.54 74.88 78.23 82.30 

5000 72.01 76.31 79.60 84.77 

Table 2. Resource Utilization with 45 VMs 
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Number 

of Tasks 

HDWOA-

LBM [10] 

(%) 

Meta-

RHDC 

[14] 

(%) 

APOA 

[15] 

(%) 

Proposed 

(%) 

1200 65.88 69.45 72.80 76.93 

2200 68.12 72.03 75.56 79.28 

3200 70.44 74.67 77.94 81.62 

4200 72.31 76.11 79.41 83.20 

5200 73.90 77.69 80.63 85.47 

Table 3. Resource Utilization with 60 VMs 

Number 

of Tasks 

HDWOA-

LBM [10] 

(%) 

Meta-

RHDC 

[14] 

(%) 

APOA 

[15] 

(%) 

Proposed 

(%) 

1500 66.34 70.02 73.50 77.45 

2500 68.91 72.58 76.00 79.88 

3500 71.55 75.13 78.32 82.25 

4500 73.42 76.95 80.13 84.66 

5500 75.10 78.80 81.47 86.90 

 

Resource utilization reflects the effectiveness with 

which available computational resources are consumed. It is 

typically calculated by comparing the amount of resources in 

use to the overall capacity of the system. Achieving higher 

utilization promotes better workload distribution, minimizes 

idle resources, and improves overall system performance by 

reducing potential bottlenecks. 

 

Figure 2. Throughput Comparison 

Figure 2 shows the relationship between the number of 

tasks and throughput (Kbps) for four scheduling methods 

such as HDWOA-LBM, Meta-RHDC, APOA, and the 

Proposed method. The throughput level increases steadily 

with the amount of tasks in each method, and this shows that 

they can handle data better when workloads are heavier. The 

Proposed approach is the highest throughput at all the levels 

of tasks, with a maximum of almost 250 Kbps at 200 tasks. 

While, HDWOA-LBM had the lowest throughput across the 

observed range. In general, the findings provide clear 

evidence that the Proposed method is better in terms of 

scalability and efficiency in comparison with current 

methods. 

 
Figure 3. Energy Consumption 

Figure 3 shows the comparisons between the four load-

balancing strategies, including HDWOA-LBM, Meta-

RHDC, APOA, and the Proposed method, in terms of the 

increasing numbers of tasks. When the number of tasks 

increases to 500, every method exhibits increased energy 

consumption because of the increased computational needs. 

Nevertheless, the Proposed method always shows the 

minimum energy usage at all task levels, which suggests 

better resource use. Conversely, APOA and Meta-RHDC 

have the most energy consumption, particularly after 250 

tasks, and less energy efficiency is demonstrated at a higher 

workload. HDWOA-LBM has a moderate score, yet it 

consumes more energy than the Proposed model.  

5. CONCLUSION 

In this paper, a novel HMPOA based IoT-Cloud 

Scheduling Model has been proposed to efficiently schedule 

and allocate IoT tasks in a cloud environment. This integrates 

Momentum Search and Giza Pyramid Construction methods 

to provide more accurate, trust, and delay-optimized task 

assignment in the cloud. The performance of the proposed 

method is evaluated in terms of higher resource utilization, 

throughput, energy efficiency, and makespan compared to 

recent methods such as HDWOA-LBM, Meta-RHDC, and 

APOA. The simulation experiment was done using cloud sim 

Plus with GoCJ dataset. The numerical results show that, at 

30 VMs, the proposed method has 84.77% utilization, 5-12% 

more than APOA, Meta-RHDC, and HDWOA-LBM. 

Similarly, at 60VMs, the proposed method achieves high 

scalability 86.90%, compared to APOA of 5.43%, and 

HDWOA-LBM of 11.8%. The HMPOA algorithm can have 

computational overhead in processing very large-scale IoT 

workloads because of its hybrid form. Thus, future research 

can aim to create lightweight or parallelized HMPOA 

versions to decrease complexity and increase responsiveness 

to massive IoT settings. 
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