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Abstract – non-orthogonal multiple access (NOMA) can satisfy 

the fifth-generation (5G) wireless communication 

requirements. For a traditional NOMA detection strategy, 

successive interference cancellation (SIC) at the receiver side is 

necessary for both uplink and downlink broadcasts. Because of 

the complex multipath channel environment and error 

propagation concerns, the traditional SIC technique has limited 

performance. In this paper a novel Deep Learning-Based 

Channel Estimation and Signal Recovery for OFDM Systems 

Over Rician Fading Channels. The transmitter performs 

traditional steps such as pilot insertion, IDFT, and cyclic prefix 

addition, followed by signal transmission. At the receiver, after 

standard preprocessing steps, the received signal is passed 

through a hybrid neural network combining convolutional and 

recurrent layers. The convolutional layers extract spatial 

features, while the recurrent layers capture temporal 

dependencies, enhancing signal detection performance in 

complex channel conditions. This RNN outperforms 

conventional detection techniques by improving robustness to 

interference and fading. The proposed model demonstrates the 

potential of integrating deep learning in advanced wireless 

communication systems for efficient and accurate signal 

recovery. 

Keywords – non-orthogonal multiple access, successive 

interference cancellation, wireless communication. 

1. INTRODUCTION 

wireless communication has been revolutionized by the 

unprecedented growth of consumer demand. Second-

generation (2G) wireless communication was designed for 

time division multiple access (TDMA) or code division 

multiple access (CDMA), whereas first-generation (1G) 

wireless communication was used for frequency-division 

multiple access (FDMA) [1]. Furthermore, fourth-generation 

(4G) and fifth-generation (5G) wireless communication 

employ orthogonal frequency division multiple access 

(OFDMA), while third-generation (3G) wireless 

communication uses wideband code division multiple access 

(WCDMA) [2]. To increase a wireless communication 

system's performance, the signal-to-noise ratio (SNR) and 

symbol error rate (SER) must be decreased. 

The deployment of 5G mobile communication is limited 

by ultra-low latency, high dependability, and high data 

throughput [4]. High-quality service delivery, the creation of 

a large data processing chain, and universal access to Internet 

of Things devices all depend on a 5G connection. One 

spectrum-efficient multiple access technique that works with 

5G technology is non-orthogonal multiple access (NOMA) 

[5]. The following functionalities are provided by NOMA: 

high connection density, low latency, and excellent spectrum 

efficiency while sending messages to several users (UEs) in 

the same frequency and time slot [6]. 

NOMA-based communication falls into two categories: 

power domain NOMA and code domain NOMA [7]. Power 

domain NOMA achieves multiplexing by assigning different 

powers to each UE in the coverage region [8]. Multiplexing 

in code domain NOMA happens in the UEs by employing 

sparse, low-density spreading sequences with low inter-

correlation (9). NOMA-based communication enables multi-

user communication in the power domain [10,11]. Multiple 

UE data may be produced from a single communication 

channel using superposition coding at the transmitter and 

sequential interference cancellation (SIC) at the receiver 

[12,13]. To overcome these issues a novel Deep Learning-

Based Channel Estimation and Signal Recovery for OFDM 

Systems Over Rician Fading Channels.  The remaining part 

of the work was followed by 

• To design a CNN-RNN-based framework for 

efficient feature extraction and temporal signal 

analysis. 

• To replace traditional channel estimation with 

deep learning for improved accuracy under 

fading conditions. 
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• To enhance OFDM system robustness against 

multipath distortion using hybrid neural 

architectures. 

• To minimize error propagation and optimize 

detection through intelligent neural-based 

compensation. 

• To provide an adaptive system diagnosis 

mechanism for reliable communication in 

dynamic environments. 

The remaining portion of the work has been followed by 

section 2 depicts the literature review, section 3 denotes the 

proposed methodology, section 4 represents the result and 

discussion of the proposed model and section 5 depicts the 

conclusion of the proposed work respectively. 

2. LITERATURE REVIEW 

In 2024 Panda, B. and Singh, P., [14] proposed a hybrid 

approach that uses a gated recurrent unit-support vector 

machine (CNN-GRU (CGRU)-SVM) in conjunction with a 

deep convolutional neural network to identify the signals of 

uplink NOMA users.  The simulation results examine the bit 

error rate performance of the suggested CGRU-SVM-based 

receiver in addition to existing DL-based GRU, CNN, and 

CGRU algorithms in uplink NOMA schemes using the 

traditional least square and minimal mean-square error signal 

detection techniques. Using an SVM classifier, it offers 

effective spatiotemporal characteristic extraction. 

Furthermore, in terms of accuracy, F1 score, and receiver 

operating characteristic with the area under the curve, the 

suggested model performs better than the previous DL-based 

methods. 

In 2024 Kondepogu, V. and Bhattacharyya, B., [15] 

provided a novel method known as Gated Recurrent Unit 

Layer Adaptive Dilated Convolutional Neural Networks 

(ADCNN-GRU). The Improved Pelican Optimization 

Algorithm (IPOA) is used to optimize the model's loss 

functions. The simulation experiment is used to assess the 

created approach's performance. The outcome demonstrated 

that the new method performed better than conventional 

models. 

In 2024 Sowmiya, R. and Blessy, A.M.C., [16] created 

an Attention-based Recurrent Neural Network (Att-RNN) to 

circumvent such restrictions when used for combined multi-

user uplink CE and SD. When the Att-RNN is evaluated in 

simulation studies, the results show that the attention-based 

mechanism produces more resilient SNR and SER under a 

variety of power-allocation and channel-mobility situations. 

These results validate the method as a low-latency, reliable 

substitute for NOMA systems in 5G and beyond. 

In 2024 Rahman, M.H., et al., [17] suggested the bi-

directional long short-term memory (BiLSTM) model, an 

effective DL model. Through training on lengthy input 

sequence data in a bidirectional architecture, this model 

improves CE performance with few pilot signals. The results 

of the simulation confirm the adequate CE accuracy of the 

suggested model. Increasing the number of antennas has 

been shown to enhance CE in terms of the normalized mean 

squared error and the obtained signal-to-noise ratio per 

antenna. 

In 2025 Assaf, T., et al., [18] suggested an integrated D3-

NOMA that combines detection, equalization, and channel 

state information estimation (CSIE) into a single, cohesive 

procedure. Performance of integrated D3-NOMA is 

theoretically analyzed for an arbitrary number of users to get 

accurate closed-form estimates for the bit error rate (BER) 

and sequence error probability (SEqP) in frequency-selective 

channels. The Viterbi technique can significantly reduce the 

computational complexity of D3, which is dependent on the 

length of the sequence. 

In 2025 Abdelhamed, M.A., et al., [19] proposed hybrid 

model improves error optimization by combining a CNN 

with bidirectional feed-forward RNN.  CNN is utilized to 

capture input signal characteristics for massive MIMO-

NOMA systems.  According to simulation data, the CNN-

BiLSTM model lowers the BER for the far user (FU) and 

55% for the near user (NU) when high-priority (HP) bits are 

broadcast.  Compared to normal SIC-based MLD, NU and 

FU have a 61% and 56% BER reduction for low-priority (LP) 

bits, respectively. 

In 2025 Shadrach, F.D., et al., [20] provided a new 

Hexagonal Mobile net (Hexa-M) for signal identification and 

channel estimation that uses HQAM pilot symbols in 

conjunction with conventional OFDM-NOMA.  The receiver 

carries out joint flexible signal detection, and the Hexa-M 

can identify symbols for every user.  When it comes to error 

performance, the HQAM performs better than comparable 

detectors.  In comparison to current solutions, the Hexa-M 

method increases energy efficiency by 16.09%, 19.23%, 

23.24%, 28%, and 31%. 

3. PROPOSED METHODOLOGY 

In this section a novel Deep Learning-Based Channel 

Estimation and Signal Recovery for OFDM Systems Over 

Rician Fading Channels. Prior to transmission across a 

Rician fading channel, the transmitter side carries out 

standard operations such as pilot insertion, serial-to-parallel 

conversion, inverse discrete Fourier transform (IDFT), and 

cyclic prefix (CP) addition.  The signal is converted from 

parallel to serial, discrete Fourier transform (DFT), and CP 

elimination on the receiver side.  An RNN model is 

subsequently given the output signal. RNN of a low-pass 

filter, multiple convolutional layers, and recurrent 

connections enabling temporal dependency capture. The 

extracted features are flattened and passed through fully 

connected layers to perform accurate system diagnosis and 

signal detection. The proposed approach significantly 

improves detection accuracy, especially under highly 

dynamic channel conditions typical of Rician fading. This 

hybrid deep learning model demonstrates its potential as an 

effective alternative to traditional detection algorithms in 

next-generation wireless communication systems. 

NOMA-MIMO Transmitter 

A MIMO-NOMA transmitter design is used in the 

suggested system to improve user connection and spectral 

efficiency.  numerous transmit antennas on the base station 

allow numerous users to receive overlaid signals 

simultaneously over the same time-frequency resources.  In 

order to take use of NOMA's power-domain multiplexing 
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features, users are grouped according to their channel 

circumstances, pairing stronger users with weaker users.  The 

data streams of users within each group are combined at the 

transmitter side using superposition coding.  Users with 

poorer channel circumstances are given greater power levels, 

while users with stronger channel conditions are given lower 

power allocations, according to the power allocation policy.  

By using successive interference cancellation (SIC) at the 

receiver, this guarantees dependable decoding. The MIMO 

configuration allows spatial beamforming to be integrated 

with the NOMA scheme, where beamforming vectors are 

optimized to direct signals toward intended users while 

minimizing inter-user interference. The combination of 

MIMO with NOMA is a viable option for next-generation 

wireless communication systems since it allows for increased 

throughput, better coverage, and effective use of radio 

resources. 

 

Figure 1. Proposed Methodology

Rician Fading Channel 

A Rician fading channel is a statistical model used to 

characterize radio propagation environments where, in 

addition to multipath components, a dominant line-of-sight 

(LOS) signal component is present. Unlike Rayleigh fading, 

which assumes no LOS path, Rician fading accounts for 

scenarios where a strong direct signal coexists with multiple 

scattered paths due to reflection, diffraction, or scattering. 

The Rician K-factor, which is the ratio of the power in the 

LOS component to the power in the dispersed components, 

describes the Rician distribution of the fading envelope in a 

Rician channel.  A K-factor of zero reduces the model to 

Rayleigh fading, whereas a greater K-factor suggests a bigger 

presence of LOS.  In urban and suburban settings with partial 

LOS circumstances, such as satellite communications, indoor 

wireless networks, and millimeter-wave systems, rician 

fading is frequently seen. The Rician fading approach is 

another variant that supports the notion that the 

representation consists of two elements: a random 

component and a resilient LOS component. The LOS 

element is the portion comprises a linear path that connects 

the Tx to the Rx and has a consistent amplitude. 

𝑃 =
𝑢2

2𝜎2              (1) 

The scale factor and power transfers from line-of-sight 

pathways to other multipaths are expressed as 𝑃 =
𝑢2

2𝜎2  .                                                                                                                   

The second one is the total power from both pathways, 

and Ω acts as a scaling distribution factor: 

Ω = 𝑢2 + 2𝜎2                                                              (2) 

Ω = 𝑢2 + 2𝜎2 defined as the total power acquired 

through every path. The signal amplitude of received 

signal (instead of the received signal strength) is then 

distributed in the rice distribution (RD) using the following 

parameters. Probability density's function is                                                                                                          

𝑢2 =
𝑃

1+𝑃
𝛺                                                                   (3) 

𝜎2 =
𝛺

2(1+𝑃)
                                                    (4)                                                                                         

𝑓(𝑎|𝑢, 𝜎) =
𝑎

𝜎2 𝑒𝑥𝑝 (
−(𝑎2+𝑢2)

2𝜎2 ) 𝐼0 (
𝑎𝑢

𝜎2)                                  (5) 

This results in the probability density function that is 

shown below: 

𝑓(𝑎) =
2(𝑃+1)𝑎

𝛺
exp (−𝑃 −

(𝑃+1)𝑎2

𝛺
) 𝐼0 (2√

𝑃(𝑃+1)

𝛺
𝑎)         (6)                                                                                           

The first-type altered Bessel function with zeroth order 

at 0th order is represented in this instance by 𝐼0. 

NOMA-MIMO Receiver 

At the receiver side of the MIMO-NOMA system, each 

user is equipped with one or more antennas, enabling the 

reception of spatially multiplexed and power-domain 
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superimposed signals. Upon reception, the signal is 

processed using spatial filtering or beamforming techniques 

to mitigate inter-beam interference and enhance the desired 

signal components. In the NOMA receiver, successive 

interference cancellation, or SIC, is essential.  Users are 

arranged according to their channel gains in each NOMA 

user group.  Before decoding their own data, users with 

stronger channel circumstances decode and remove the 

signals meant for users with lower channel conditions.  On 

the other hand, users with smaller channel gains consider 

stronger users' signals as noise and decode their data directly. 

This hierarchical decoding strategy is essential to achieve 

user fairness and increase system throughput. Channel 

estimation is performed to obtain accurate channel state 

information (CSI), which is necessary for effective 

beamforming and SIC. The receiver complexity depends on 

the number of users in each group and the accuracy of the 

power allocation and channel estimation. The integration of 

MIMO at the receiver further enables spatial diversity and 

interference suppression, contributing to the reliability and 

efficiency of the overall MIMO-NOMA communication 

system. 

RNN 

In MIMO-NOMA systems, signal detection becomes 

increasingly complex due to the superposition of multiple 

user signals and inter-user interference. RNN particularly 

LSTM and GRU architectures, have shown significant 

potential in improving signal detection performance in such 

scenarios. Unlike conventional detection schemes, which 

often rely on linear methods or Successive Interference 

Cancellation (SIC), RNNs are capable of learning temporal 

dependencies and nonlinear relationships inherent in time-

varying MIMO-NOMA channels. The sequential nature of 

RNNs allows them to model the correlation in the received 

signal streams, making them effective for joint user detection 

and demodulation. By training on received signal sequences, 

RNN-based detectors can accurately predict transmitted 

symbols even in low SNR conditions and highly overloaded 

user environments.  

𝑎𝑥 = 𝜎𝑎(𝐼𝑎𝑡𝑥 + 𝐽𝑎𝑢𝑥−1 + 𝑘𝑎)                                        (7)                                                             

   𝑏𝑥 = 𝜎𝑏(𝐼𝑏𝑎𝑥 + 𝑘𝑏)                                                                (8)                                                       

where 𝑡𝑥 be the input vector,  𝑎𝑥 be the hidden layer 

vector, and 𝑏𝑥 be the output vector respectively. I, J, and k, 

are parameter matrices and vector.  

  𝜎𝑎(𝑡) = 21 + 𝑦 − 2𝑡 − 1                                           (9)                                               

   𝜎𝑏(𝑡) = 𝑡                                                                  (10)                                                               

𝜎𝑎 and 𝜎𝑏 are activation functions, respectively, given in 

eqn (9) and (10). 

 

4. RESULT AND DISCUSSION 

In this section discusses simulation performance 

outcomes for proposed model MIMO-OFDM. The 

comparisons involves Att-RNN, and ADCNN-GRU, 

methods with proposed techniques in relations of SER versus 

SNR. 

Figure 2. Training and Validation 
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Figure 2 illustrates the performance of a Deep learning 

model over 30,000 iterations, showing rapid convergence. 

Both training and validation accuracy swiftly surpass 95% 

and stay almost constant, as shown by the top-left and top-

right graphs, suggesting good generalization and efficient 

learning. The bottom plots simultaneously demonstrate a 

steep drop in training and validation loss, stabilizing close to 

zero, confirming the model's persistent error minimization 

capabilities. 

 

Figure 3. SER comparison of Proposed and existing 

Fig. 3 illustrates the Symbol Error Rate (SER) 

performance of three deep learning-based signal detection 

models Proposed, Attention-based Recurrent Neural 

Network (Att-RNN), and Adaptive Convolutional GRU 

(ADCNN-GRU) in a MIMO-NOMA system SNR 

conditions. The proposed model consistently outperforms 

both Att-RNN and ADCNN-GRU, achieving significantly 

lower SER, especially in high-SNR regimes. This highlights 

its superior capability in mitigating inter-user interference 

and accurately detecting superimposed signals. The Att-

RNN shows moderate performance due to its attention-

enhanced temporal modeling, while ADCNN-GRU trails due 

to its relatively higher complexity and limited feature 

generalization under noise. 

5. CONCLUSION 

In this research a novel Deep Learning-Based Channel 

Estimation and Signal Recovery for OFDM Systems Over 

Rician Fading Channels. The transmitter performs traditional 

steps such as pilot insertion, IDFT, and cyclic prefix addition, 

followed by signal transmission. At the receiver, after 

standard preprocessing steps, the received signal is passed 

through a hybrid neural network combining convolutional 

and recurrent layers. The convolutional layers extract spatial 

features, while the recurrent layers capture temporal 

dependencies, enhancing signal detection performance in 

complex channel conditions. This RNN outperforms 

conventional detection techniques by improving robustness 

to interference and fading. The proposed model demonstrates 

the potential of integrating deep learning in advanced 

wireless communication systems for efficient and accurate 

signal recovery. This method can be used in more 

complicated systems in the future, including MIMO-based 

NOMA systems.  Additionally, it may be used on a 

promising physical layer, such intelligent surfaces that reflect 

light 
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