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Abstract — The Internet of things is a network of interconnected
devices that exchange data and communicate with the cloud and
other loT devices. 10T devices, which may include consumer
electronics as well as mechanical and digital equipment, are
typically equipped with sensors and software. But conventional
IDS frameworks frequently have trouble correctly
distinguishing intricate attack patterns from typical activity,
which leads to a high false-positive rate and little flexibility to
changing threats. This paper proposes a novel CODE-IDS
framework using deep learning Network to improve network
security by precise cyber threat identification and mitigation.
While allowing secure access to attacker, the system records the
actions of possible attackers. The technique successfully
differentiates between typical, DDoS, MiTM, and probe attack
traffic by using Deep learning. PCA is used for feature
extraction and the Adaptive Weighted Particle Swarm
Optimization is applied to retain the most important
classification for feature selection. The parameters, enhancing
its accuracy and performance the overall accuracy of the
suggested model is 98.78% and methods achieving a low
accuracy of 93.85% 96.8% and 96.8% respectively.

Keywords — Intrusion Detection, Adaptive Weighted Particle
Swarm Optimization, Deep Learning, Convolutional Neural
Network, Principal component analysis.

1. INTRODUCTION

IOT devices has developed into a game-changing
concept that is transforming our interactions with technology
and our environment. It represents a vast network of
interrelated systems, sensors devices that able to collect,
exchange, process data instantly. If an 10T system complies
with all applicable security standards, it is theoretically
completely safe; but, in reality, this is not always the case [1].
An increasing number of devices are being connected every
day as Internet of Things grows quickly. Devices with
limited resources and diversified and wide networking make
them susceptible to a range of cyberattacks [2]. Various
techniques have been used to identify security breaches;
however, they are frequently computationally efficient and
inappropriate for situations when resources are limited. The
development of effective security measures against a variety
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of assaults is therefore necessary. The development of
efficient attack detection techniques has been made possible
by recent developments in deep learning (DL) models [3].

IoT expands the Internet's capabilities beyond
computers to encompass a wide range of settings and
procedures. End users connect everything that can be seen to
the network in order to collect data, transmit it back, or do
both. [4]. 10T devices have limited computational and storage
capability, sophisticated security measures requiring a lot of
memory or data are inapplicable. 10T devices are more
susceptible as a result of the weak or nonexistent security
software [5]. It is crucial to swiftly implement intelligent
solutions in loT-based applications in order to defend against
complex cyberattacks. As a result, the SDN-like framework
must be recognized for a number of attack issues [6].

loT systems frequently have less processing power. In
order to solve this, developing a lightweight attack detection
model in a resource-constrained context requires lowering
the number of characteristics. Additionally, efficiently
identifying irregularities from the enormous volumes of
high-dimensional data in 10T is still a difficult undertaking
[7]. The cloud computing environment, which has more
sophisticated CPUs and sufficient memory resources, is
where the data gathered from the Internet of Things system
is kept [8]. Because 10T devices are utilized in smart city
applications, cyberattacks have the ability to modify devices
to an insecure setting or obtain information about citizens'
daily activities without the user or administrator's knowledge
[9]. The goal is to shift the DL implementation from edge
layer sensors to the closest location of data sources, where
data analysis will be completed quickly. Traditional cloud-
based services are extended by fog computing to the network
edge, where data is generated [10].

1.1. Objective

The main objective of this study to detect possible
security breaches and unauthorized access attempts with high
accuracy and minimize false positives, to improve and
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develop methods or algorithms that efficiently identify and
analyze malicious activity within a network by looking at
network traffic patterns. The objective of this study:

e To develop a hybrid optimization model to identify
0T network intrusions and extract optimal features
from traffic data, which should lower the deep

learning model's computational cost.

To develop deep learning algorithm that minimizes
data loss and monitors and detects assaults with
high accuracy.

To develop model for cyber-attack that looks for
recognized attacks as well as suspicious or
malevolent activity in order to spot threats early on
and take action before they cause harm.

To develop an IDS that can effectively grow with
the number of 10T devices, preserving functionality
while guaranteeing minimal resource usage.

To create a collaborative intrusion detection system
that effectively tracks and identifies cyberattacks on
dispersed Internet of Things devices.

1.2. Contribution

Following are the main contributions the research work
presented in this study:

e For the purpose of safe, and secure method has been

suggested to improve network performance.

created an advanced intrusion detection system that
accurately detects cyberthreats by utilizing deep
learning, particularly the LSTM network.

Proposed adaptive deep learning model is
appropriate for real-world applications since it can
react to changing cyberthreats.

Optimized IDS framework for resource-constrained
10T environments such as smart homes, healthcare,
and industrial loT.

Enhancing security through effective classification
using deep learning and fuzzy rules.

The remainder of this study is organized as follows:
Section 2 precise with the related works. The developed
methodology is included in section 3. Section 4 includes the
experimental results and discussion. Section 5 includes the
conclusion and future work.

2. LITERATURE REVIEW

In 2024, Jhansi Bharathi Madavarapu, [11] suggested
framework can identify a variety of cyberattacks with a
99.97% detection rate, 99.96% detection accuracy in binary
classification, 99.65% detection accuracy in classification. It
is also efficient as to response time and detection accuracy.
Because of its dispersed nature, high computing capability,
close proximity to edge devices, the suggested method
deploys an attack detector on fog nodes. To determine which
of the six DL models performs the best, they are compared.
Five distinct datasets with a range of assaults are used to
assess each DL model. According to experiments, the long
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short-term memory model works better than the other five
DL models.

In 2024, Vishnu Karthik Ravindran, [12] suggested 10T-
IDCS-CNN utilizes parallel processing with fast 19-core-
based Intel CPUs and high-performance computing with the
reliable CUDA based Nvidia GPUs (Graphical Processing
Units). Specifically, the suggested system is made up of three
subsystems: one for traffic classification, one for feature
engineering, and one for feature learning. In this study, every
subsystem was created, checked, combined, and validated.
The solution was evaluated using the NSL-KDD dataset,
which covers all of the major 10T computing attacks.

In 2024, T. Maris Murugan and A Jeyam [13] developed
10T systems are becoming more vulnerable to cyberattacks
due to advancements in the loT environment, which may
result in malevolent incursions. These incursions may result
in both financial and physical harm. The IloT
system/framework, the 10T, learning-based approaches, and
the challenges faced by 10T devices or systems following an
attack are the main topics of this article. A variety of
cyberattacks, including DDoS, probing, U2, R2L, botnet
assault, spoofing, MITM attacks, are used to evaluate
learning-based techniques.

In 2024, K. Paul Joshua and A. Jenice Prabhu, [14]
structure that uses Transfer Learning (TL) to get beyond
these obstacles. In particular, a new collaborative learning
methodology that allows a source network with a large
amount of labeled data to efficiently and rapidly teach
"knowledge" to a target network with unlabeled data. The
productivity, adaptability, and scalability of intrusion
detection systems are limited by requirement that the
networks' data sets used in state-of-the-art research have the
same characteristics.

In 2024, M. Devaki, Jeyaraman Sathiamoorthy and M.
Usha, [15] suggests enhancing network intrusion detection
systems with a deep hybrid learning model. In order to
achieve this, the data set is first preprocessed and
standardized. Then, to successfully identify anomalies in
traffic data from industrial internet of things (IoT) devices,
deep hybrid learning models that ALSTM and FCN with
Gradient XGBoost and AdaBoost are built.

In 2024, Bakhsh, S.A. et al., [16] suggested better
performance utilizing the CIC-10T22 dataset in comparison
to the state-of-the-art DL-IDS. Furthermore, by producing
quick fixes for security issues in 10T networks, the models
may improve intrusion detection in these networks.
Furthermore, by producing quick fixes for security issues in
10T networks, the models may improve intrusion detection in
these networks.

In 2024, Souri, A. et al., [17] suggested model is
compared to a number of alternative baseline DL models.
The model's performance was evaluated using three
important datasets UNSW-NB15, and CICloT 2023 that
included a variety of attack scenarios. With less resource
usage, the suggested model outperforms the current model in
terms of accuracy and detection time and use a correlation
coefficient as a fitness function in Genetic Algorithms (GA)
to pick features. Furthermore, feature ranking uses mutual
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information (M) to gauge how dependent each feature is on
the target variable.

3. PROPOSED METHODOLOGY

In this research the proposed DL model design for
cybersecurity in smart healthcare, smart home, smart city
environment. This study begins with pre-processing
standaization and data cleaning to remove the noise from the
data. PCA is use for feature extraction to identify the revelent
features. Then the feature selection is applied by using
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Adaptive Weighted Particle Swarm Optimization. To
classify detection of cyberattack as Normal, DDoS, MiTM,
Probe, ConvBi-LSTM Network is used. The model
framework obtains various smart system the role of the
attacker attempts to take advantage of fault, highlighting how
important need cybersecurity measures. Figurel represent
the suggested CODE-IDS method to improve threat
detection and reduce cyber risks.

Pre-Processing
Data Cleaning

Proposea DL l

Attacker

Classification

“Model
i ( Feature Extraction

\ HBDMO

o “ |

Feature Selection

AW-PSO

ConvBi-
LSTM

Figure 1. Proposed framework of cyber-attack detection model

3.1. Data pre-processing

The framework's initial phase is shown in this section,
the DL models, the data is pre-processed. In addition to
preventing overfitting issues, proper pre-processing of
network traffic enables DL models. The two phases of pre-
processing are data processing and feature selection. Due to
the enormous volume of the dataset, three distinct datasets
that can accurately represent the whole dataset for training
and testing procedures were created by randomly selecting
data from both regular traffic and all attack kinds. In order to
remove imbalances from the data set, log standaization
procedures were used.

3.2. PCA based on feature extraction

Principal component analysis represents vector as the
sum of its basis vectors, PCA recognition from a
mathematical perspective involves three fundamental
processes. The covariance matrix is first created using
training data. Next, associated eigenvalues and eigenvectors
are computed. Third, by projecting the test data into the
subset domain and contrasting them with the data from the
training subspace domain, the test data are detected. The
following steps compose the PCA algorithm:

Let F (X, y) be am x n two-dimensional array of intensity
values in the input data. The training set's average image is
ascertained via,

1)

_ 1
X = ZZ%=1 Xi
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The dispersion of each feature vector with regard to the
mean vector may be represented by computing the
covariance matrix. As defined by, the covariance matrix C

Cox = 7 Zhoa (e =B — )T @

Itis possible to calculate the eigenvectors and associated
eigenvalues using,

v = 3)

where V denotes the collection of eigenvectors
connected to eigenvalue. Using eigenspace, this displayed
image and the training data will be compared. Similarity
metrics will be used to compare the data. For recognition, the
training data with the greatest similarity to the test data will
be utilized.

3.3. Adaptive Whale -Particle Swarm Optimization based
on feature selection

Adaptive Whale-Particle Swarm Optimization, a novel
hybrid algorithm, is developed for feature selection. It
integrates strategies from whale optimization and adaptive
swarm optimization. A randomly selected solution is the first
step in the AW-PSO algorithm. On the other hand, search
agents react differently to different actions. Equation (4) and
(5) describes the objective function F,;;, which is employed
in each iteration.

Hopj = E*(1+p)/XF 4)



Ramakrishna Hegde et al. / IJCEOQ, 02(4), 111-116, 2024

XF=m/s ©)

Where m is the number of elements sampled, S is the
lack of a population, E is the population error, and b is a
constant with a value of 0.5. The hunter assists in the hunting
process, the task of finding the prey and surrounding it as
effectively as possible falls to the hunter.

Algorithm 1: AW-PSO
Begin with initializing the population of humpback
whales as Y; = (1,2,...,n), where initially i = 1.

For each Y;, determine the fitness function Fy, ;.
While (i < maximum number of iterations)

For each search agent

Update b, P, L, and m

Modify the position of the current search agent
elseif (|P| > 1)

Select Y, 44, the agent for random searches.

The current search agent's position can be modified

The global best position can be found by searching for
the lowest individual best position.

end if

elseif (m > 0.5)

Upgrade the position of the current search agent
Replace the global best position with the new position
end if

end for

Update Y™ (i) if a better solution is found.

i+1

End while

i =

3.4. ConvBi-LSTM Network based on classification

Convolutional features are present both input-to-state
and state-to-state transitions of ConvLSTM, a form of
recurrent neural network for spatiotemporal prediction.
Based on inputs and previous states, the ConvLSTM predicts
the future state of a specific grid cell. Using a convolution
operator in input-to-state and state-to-state transitions makes
this simple. The convolution operator and Hadamard product
are shown by the following key equations for ConvLSTM:

xp =0y * X + Y x H oy + Y 0C4 + by (6)
T, =0V *X¢ + Yo *Hi_y + Y, OCi_1 + b, @)
¢ =1:OC_, + x,Otanh(Yye * Xy + Y5e *He_1 + b, (8)
0 = 0(Yyo *X¢ + Y50 * H_q + Y, OC; + b, 9)
H; = 0;®tanhn(C;) (10)

A ConvLSTM with larger transitional kernel must be
able to catch rapid movement, while one with a smaller
kernel should be able to capture slower motions, if we
consider to be the hidden representations of moving objects.
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4. RESULTS AND DISCUSSIONS

4.1. Dataset Description

The performance of suggested model was evaluated
using well-known datasets: UNSW-NB-15. The research
community is aware that these databases contain a wide
range of network threats. In our tests, we examined the
complete datasets without separating out certain attack types
to assess the efficacy of suggested model in identifying a
wide variety of cyberattacks.

4.2. Performance Evaluation

Accuracy, recall, Fl-score, precision, and Matthews
Correlation Coefficient are among the metrics used to assess
the detection model's performance. Higher accuracy values
signify greater performance on a given job, which is how
these models are measured. False Positive, True Negative,
True Positive, and False Negative all contribute to the
confusion matrix. Figure 3 represent the performance
evaluation of classification model quality. TP, TN, FP, and
FN are all taken into account to create a balanced
categorization  performance  measure.  Performance
Evaluation of proposed model is shown in Figure 3
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Figure 2. Performance Evaluation of proposed model
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Figure 3. Accuracy and loss curve of the Proposed Method

The suggested CODE-IDS framework has attained an
overall accuracy of 99.01% DS method. The classification of
the validation and testing is illustrated through accuracy and
loss plots of the proposed intrusion detection methods shown
in Figures 3(a) and 3(b) These plots illustrate the model's
performance highlighting its effectiveness in detecting
intrusions. The low loss values also reflect successful
learning with minimal overfitting during the training process.
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Figure 4. Attack Detection rate for Proposed model

Performance evaluation in terms of detection rate of
suggested system with numerous methods. Figure 4
illustrates Attack Detection Rate (ADR) for various methods,
comparing Normal, DDoS, MiTM, and Probe is the Attack
detection performance. The proposed system attained a
98.54% detection rate, while the existing methods achieved
only 93.85% for FFNN, 96.8% for LSTM, 97.12% for RNN.
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Figure 5. False alarm rate for CODE-IDS framework

Figure 5 represent the false alarm rate 96.35%% for
various IDS across the false detection rates. Overall, the
proposed CODE-IDS demonstrates superior effectiveness in
minimizing false alarms compared to the other methods.

10

True Positive Rate

—— Normal = 0.9881

— DDoS = 0.9882

—— Probe = 0.9921
MITM = 0.9901

False Positive Rate

Figure 6. ROC curve for CODE-IDS

Figure 6 demonstrates the Receiver Operating
Characteristic (ROC) curves for Normal, DDoS, MiTM,
Probe. The ROC curves for the Positive, Negative, and
Neutral classes show strong model performance indicating
low FPR high and TPR. The model achieves high accuracy,
with values of 98%, 97.5%, and 98.3% respectively. The
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performance across all three classes illustrates the approach's
efficiency in accurately distinguishing between the attack
detection.

5. CONCLUSION

In this study the novel CODE-IDS framework using
deep learning network approach has been proposed to
enhance network security by accurately identifying and
mitigating cyber threats. The proposed methodology
demonstrates a comprehensive and effective solution for
enhancing intrusion detection. PCA for feature extraction
and feature selection is applied by using Adaptive Weighted
Particle Swarm Optimization. Then the deduction of
cyberattack is classified as Normal, DDoS, MiTM, Probe, by
using ConvBi-LSTM Network. The model framework
highlights the need of cybersecurity measures by obtaining
the role of the attacker attempting to exploit fault in a variety
of smart systems. The overall accuracy of the CODE-IDS
method is 98.78% and methods achieving a low accuracy of
93.85% 96.8% and 96.8% respectively. In future improve the
model emerging cyberthreats and Testing framework on
diverse dataset and to detect more refined attack types. This
future validates its performance and stability in real-world
application.
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