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Abstract — Lichens are interesting composite organisms that
evolved and diversified after a symbiotic association between
algae and fungi and lichens are estimated to cover roughly 10%
of terrestrial ecosystems. The limited number of images in
datasets makes it difficult to classify the lichen classes and the
dependability rate of the existing study is still quite low. In this
paper, a novel deep-learning model is proposed for the
classification of lichens using aerial images. The input aerial
images are gathered from western ghats and the collected
images are pre-processed utilizing a Contract stretching
adaptive histogram equalization (CSAHE) filter to increase the
image quality. The Mask RCNN model is implemented to
extract the relevant features from the images and also segment
the region of the enhanced images. The Deep neural network is
used for classifying the lichens from the western ghats.
According to the result, the proposed model attains a 99.12%
success rate for the classification of lichens. The proposed Mask
RCNN enhances overall accuracy of 2.53%, 6.39%, and 1.88%,
better than RNN, CNN, and RCNN. The proposed DNN
improves its reliability by 8.13%, 4.45%, and 0.87% better than
FNN, GNN, and DBN respectively. The proposed model
enhances the overall accuracy of 38.33%, 10.12%, and 4.12%
better than DCNN, CNN, and XGBOOST.

Keywords — Deep neural network, Lichens, Contract stretching
adaptive histogram equalization, Mask RCNN.

1. INTRODUCTION

Lichens are interesting composite organisms that
evolved and diversified after a symbiotic association
between algae and fungi and lichens are estimated to cover
roughly 10% of terrestrial ecosystems. In the biologically
rich Western Ghats of India, lichens—symbiotic organisms
made up of fungi and photosynthetic partners like algae or
cyanobacteria—play a critical role [1-2]. The Western Ghats
are home to the greatest percentage of lichens in India—
nearly 45%—of any other location. Of these, the Western
Ghats are home to 253 indigenous species. Tamil Nadu
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contains more lichens than any other state, with 657 species.
Karnataka, Kerala, and Maharashtra are next with 336, 288,
and 91 species. Classifying lichens in this region using deep
learning (DL) methods presents a compelling area of
research due to the limitations posed by the sheer diversity
and ecological significance of lichens in this unique
ecosystem [3-5]. The Western Ghats are recognized as a
global biodiversity hotspot, hosting a diverse array of lichen
species that thrive in varied ecological niches spanning
elevations and climatic zones. Traditionally, lichen
classification relies heavily on morphological and chemical
traits, a labor-intensive process that can be limited by
subjectivity and expertise. Leveraging DL, a branch of
artificial intelligence (Al) that excels in recognizing patterns
within complex data, offers a promising avenue to augment
traditional taxonomy with automated image-based
identification [6-8].

Deep learning models are trained using large datasets of
lichen images, capturing intricate visual features that are
often challenging for human observers to discern. By
employing  convolutional neural networks (CNN)
architecture for image recognition tasks, researchers develop
systems capable of distinguishing between subtle variations
in lichen morphology and coloration [9-11]. This approach
has the potential to accelerate the identification process and
enhance our understanding of lichen diversity in the Western
Ghats. However, applying deep learning to lichen
classification in the Western Ghats encounters several
notable limitations. Firstly, gathering a comprehensive and
representative dataset of lichen images from this region is a
significant challenge. Lichen diversity is vast and distributed
across varied habitats, necessitating extensive fieldwork to
collect high-quality images encompassing different species
and environmental conditions. Limited availability of such
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data can impede the development and generalization of DL
models [12-14].

Another significant challenge is the adaptation of DL
models to handle intra- and interspecies variability in lichen
morphology. Lichens exhibit considerable phenotypic
plasticity influenced by environmental factors, making it
challenging to develop robust classifiers that can accurately
generalize across diverse conditions. Overcoming these
hurdles could pave the way for a more effective and
comprehensive understanding of lichen diversity and
ecological dynamics in this ecologically vital region. In this
paper, a novel DL model is developed for the classification
of lichens in western ghats. The suggested work's main
contributions are as follows.

e In this paper, a DL model is recommended for the
categorization of lichens using aerial images.

e The input aerial images are gathered from western
ghats and the collected images are pre-processed
utilizing a CSAHE filter to enhance the image.

e The Mask RCNN model is implemented to extract
the relevant features from the images and also
segment the region of the enhanced images.

e The Deep neural network is used for classifying the
lichens from the western ghats.

The remaining sections of this paper are planned as
follows. Chapter 2 offers an outline of the literature, followed
by a full explanation of the proposed model for lichen
detection in Chapter 3, results and discussion in Chapter 4,
and a conclusion detailed in Chapter 5.

2. LITERATURE SURVEY

Researchers have offered numerous studies in recent
years for lichen classification techniques. This section is a
succinct summary of some of the recent work.

In 2021 Galanty, A et al., [15] offered a tool based on a
deep convolutional neural network (DCNN) that may help
identify different species of Cladonia lichen. This CNN has
advanced to a classification level that is frequently
comparable to that of humans. Although the trained model's
accuracy of 60.94% is acceptable, further reliability testing
is still needed for automated lichen species recognition.
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In 2021 Galanty, A et al., [16] created DCNN to identify
the species of lichen. The test is helpful for the first in-field
identification of Cladonia species and achieves 69.93%
accuracy for lichen species detection. When compared to
other models, the test result of the developed model is
insufficient.

In 2022 Presta, A et al., [17] employed a machine-
learning approach based on patch classification to classify
lichen taxa from pictures. Using CNN as feature extractors,
the lichen was classified. With a particularly constructed
descriptor, 89% of the dependability rate is measured
utilizing the lichen dataset.

In 2023 Sandino, J et al., [18] created a DL model that
will allow for accurate vegetation mapping and surveillance
in ASPAs. The drones gather supervised ML classifiers, and
ground control points (GCPs). Extreme gradient boosting
(XGBoost) was used to train the model, and mapping of moss
and the effective recognition and lichens was accomplished
with an average recognition rate of 95%.

In 2023 Richardson, G. et al.,, [19] created ML
algorithms in Québec and Labrador, Canada, to forecast the
percentage of lichen covered in Sentinel-2 data. With a 5.2%
mean absolute error, dense neural network (DNN) surpassed
the other one with an accuracy of 0.76. Employing a
Sentinel-2 image mosaic and a trained DNN, a regional
lichen map was produced.

According to the survey, the existing studies on
automated lichen classification using deep learning methods
highlight several limitations. One common limitation
observed across the existing surveys is the reliance on
relatively small and potentially biased datasets for model
training and evaluation. The reliability rate of the existing
study remains very low when compared with other models.
To overcome these issues a novel DL model is developed for
the classification of lichens.

3. PROPOSED METHOD

In this section, a novel DL framework is developed for
the classification of lichens using aerial images.
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Figure 1. Block Diagram of suggested framework
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The input aerial images are gathered from western ghats
and the collected images are pre-processed utilizing CSAHE
filter to enhance the image. The Mask RCNN model is
implemented to extract the relevant features from the images
and also segment the region of the enhanced images. The
Deep neural network is used for classifying the lichens from
the western ghats.

3.1. Data pre-processing

To improve the quality of the collected photos, pre-
processing is done using the CSAHE approach. The output
pixel values from the input images are produced by linear
filters that are created by combining the pixel ideals of
neighboring inputs. By applying CSAHE to images, the
technique aims to enhance contrast between different
structures, improve image visualization, and potentially help
in the detection and diagnosis of lung cancer. Using a
programmable transfer function created from the properties
of the input photos, the new level is applied to each pixel. For
this discussion.

@)

Where k., .x—and k,,;, denotes the input images with the
highest and lowest intensity values, respectively. An
additional intensity value is applied to each pixel, as defined
in Equation (2).

I, = |k max—Kminl

:Pr_{ ki—u; Af ki=Lmax (2)
B kivui  if ki= Liin
1V1 = k + 1" xn_xmin (3)

Xmax—Xmin

To change the value of each pixel, utilize the formulas
that were previously explained. Image noise is reduced and
features are improved in this way. The final output image is
obtained by combining all the sub-images generated through
this process, enhancing the overall visual quality and details.

3.2. Feature Extraction

The process of converting raw pixel data into a set of
representative features that draw attention to important
patterns or characteristics in an image is known as feature
extraction. In many computer vision applications, such as
object identification, picture retrieval, and image
categorization, it is a crucial stage toward enabling machines
to read and understand visual content. In this phase, the Mask
CNN Algorithm is used to extract the necessary features from
the segmented image. Faster RCNN is an extension of Mask
RCNN, a system for instance segmentation. It is broken
down into two phases: the first generates ideas by scanning
the image, and the second generates masks and bounding
boxes by categorizing those ideas.

Target identification and object segmentation at the
pixel level can be done concurrently by the instance
segmentation algorithm model known as Mask RCNN. To
extract features and obtain the relevant feature maps, the
image must be analyzed employing the earlier trained Mask
RCNN model. The SoftMax classifier is then used to binary
classify the foreground and background. Frame regression
yields more precise information about possible frame
positions. Moreover, non-maximum suppression excludes a
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portion of the ROI. Next, a fixed-size feature map can be
created by transferring each ROI's feature map and final ROI
to the RolAlign layer. The flow eventually splits into two
divisions: the path that enters the fully convolutional network
(FCN) for pixel segmentation and the FCN for object
detection and frame regression.

3.3. Deep Neural Network

DNN is a neural network with several layers of
connected nodes. Three phases of layers are commonly seen
in DNNs: input, hidden, and output layers. The initial input
data, such as a word or image, is received by the input layer.
Relevant features or representations are extracted from the
input data by the intermediate layers. Because deep networks
have multiple hidden layers, they can learn hierarchical
models for the input data, which are then used by the output
layer to produce the final estimate or categorization.

_m<0 f(m)=0
_{nZO f(n) =j

Rectified Linear Unit (ReLU), a nonlinear activation
function is widely used in regression analysis. The ReLU
yields zero if the parameter value (z) is less than zero; if it is
greater than zero, it yields the input value indicated in
equation (4). Currently, the DNN model is used to classify
lichens with a higher level of dependability than other
cutting-edge networks.

4. RESULTS AND DISCUSSION

In this research, the lichen dataset [] is utilized for the
classification of lichen in western ghats. Lichens are more
complex organisms than fungi. They arise from the
combination of one or more fungal and algal races. 2,300
species of lichens, representing 305 taxa and 74 families,
have been gathered from various parts of India, a country
known for its immense diversity worldwide.

(4)

From figure.2, the input images (column 1) are pre-
processed (column 2) utilizing a CSAHE filter to enhance the
image. The generated images are feature extracted (column
3) and the regions are segmented (column 4) by
implementing the Mask RCNN model. Finally, the DNN
model is used for the classification of Lichen classes (column
5).

4.1. Performance Analysis

The efficacy of the suggested approach was suggested
for identifying lichen classes using precise indices including
accuracy, recall, and F1 score.
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Figure 4 describes the lichens detection of the proposed
model and other existing techniques in the form of F1 Score,
recall, accuracy, and precision.
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Figure 2. Experimental result of the suggested approach

Table 1. Experimental Evaluation of the Proposed Model

3.0,

LOSS

Classes Accu | Preci | Recal F1-
racy | sion I Score
Acanthothecis | 99.34 | 96.88 | 95.32 | 97.85
gracilis
Anisomeridium | 99.33 | 98.05 | 94.55 | 97.03
glaucescens
Lecanographa | 98.88 | 96.34 | 96.17 | 98.23
follmannii
Porina farinosa | 98.96 | 97.01 | 98.28 | 98.22

The efficacy of the suggested approach to classify
lichens is illustrated in Table 1. The suggested approach
achieves a 99.12% success rate. The proposed model
receives an F1 score of 97.83%.
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Figure 3. Accuracy curve of the suggested approach
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Figure 4. The loss curve of the recommended approach

The accuracy curve in Figure 3 demonstrates that
accuracy rises as epochs rise. The approach’s loss diminishes
as the number of epochs, illustrated by the epoch compared
to the loss curve in Figure 4

4.2. Comparative Analysis

The efficacy of the neural network design was measured
and the findings obtained superior accuracy. The proposed
model with four neural network classifiers such as RNN,
CNN, and RCNN was evaluated for competency.
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Table 2. Comparison of different networks with suggetsed model

Techniques Precision | Specificity | Recall | F1score | Accuracy
RNN 95.31 94.84 94.29 88.87 96.59
CNN 92.57 92.19 92.51 92.32 92.73
RCNN 94.19 93.48 95.48 94.89 97.24
Proposed Mask RCNN 97.88 96.60 97.39 98.44 99.12

According to Table 2. the suggested Mask RCNN
improves overall accuracy by 2.53%, 6.39%, and 1.88%,
better than RNN, CNN, and RCNN. Proposed Mask RCNN
maintains a 99.12% high accuracy range.

Table 3. Comparison of existing approach with proposed

DNN

Methods | Accu | Speci | F1- | Preci | Sensi
racy | ficity | score | sion | tivity
FNN 90.99 | 92.14 | 93.31 | 87.99 | 92.33
GNN 94.97 | 88.19 | 87.27 | 88.74 | 90.55
DBN 98.25 | 90.71 | 92.18 | 93.22 | 82.58
Proposed | 99.12 | 98.84 | 95.97 | 98.76 | 96.98

DNN

While identifying the network with the most accurate
classification, Table 3 compares several standard DL
networks. When contrasted to the proposed model the
traditional DL systems failed to yield enhanced fallouts. The
proposed DNN improves its reliability by 8.13%, 4.45%, and
0.87% better than FNN, GNN, and DBN respectively.

Table 4. Contrast of suggested approach with the previous

frameworks
Author Technique | Accuracy
Galanty, Aetal., [15] DCNN 60.79%
Presta, A etal., [17] CNN 89%
Sandino, Jetal., [18] | XGBOOST 95%
Proposed Model DNN 99.12%

Based on Table 4, the suggested model improves the
overall accuracy by 38.33%, 10.12%, and 4.12% better than
DCNN, CNN, and XGBOOST, respectively. According to
the comparison above, the developed model surpasses
previous frameworks regarding reliability.  However, in
contrast to the suggested framework, the previous model
does not perform well. Therefore, the recommended
approach estimated findings are quite trustworthy for lichen
classification.

5. CONCLUSION

In this research, a novel DL approach is developed for
the categorization of lichens using aerial images. The input
aerial images are gathered from western ghats and the
collected images are pre-processed utilizing CSAHE filter to
enhance the image. The Mask RCNN model is implemented
to extract the relevant features from the images and also
segment the region of the enhanced images. The Deep neural
network is used for classifying the lichens from the western
ghats. According to the result, the proposed model attains
99.12% of success rate for classification of lichens. The
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proposed Mask RCNN enhances overall accuracy of 2.53%,
6.39%, and 1.88%, better than RNN, CNN, and RCNN. The
proposed DNN improves its reliability by 8.13%, 4.45%, and
0.87% better than FNN, GNN, and DBN respectively. The
proposed model enhances the overall accuracy of 38.33%,
10.12%, and 4.12% better than DCNN, CNN, and
XGBOOST. In the future, the proposed framework will be
enhanced with an enhanced model for the categorization of
lichens.
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