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Abstract — Wireless Sensor Networks (WSNs) play a critical
role in Internet of Things (IoT) applications that offer
automation and data exchange across various domains such as
environmental monitoring, healthcare, and agriculture. WSN
frequently suffers from unstable topology, energy limitations,
and communication overhead that damage the network
performance. To overcome these issues, this study introduced
the Energy-efficient Mantis Search Optimization for Wireless
Sensor Networks (EMSO-WSN) framework to enhance the
routing efficiency in WSN-IoT. This model includes Fuzzy C-
Means (FCM) for adaptive clustering, Adaptive Walrus
Optimization (AWO) for efficient Cluster Head Selection
(CHS), and Mantis Search Algorithm (MSA) for robust route
optimization. This research focuses on improving the WSN in
IoT applications that will enhance the network lifetime and
energy efficiency. The proposed EMSO-WSN emphasizes
multi-phase decision making, behavioral modelling, and soft
clustering, ensures high scalability, and reduces latency.
Finally, the experimental framework was simulated by Python
using NS2 for fine-grain throughput and computational
efficiency. The EMSO-WSN model is evaluated using key
metrics such as Network Lifetime (NL), Energy Consumption
(EC), delay, number of CH, Data Packet Delivery (DPD), and
throughput. This shows the comparison of the proposed EMSO-
WSN reduces less EC of 6 Joules at 100 nodes than that of other
existing methods like SWARAM of 9 J, HHO-CFR of 10 J, and
ECEEC of 11 J, respectively. The throughput of proposed
EMSO-WSN achieves 58.75% higher than that of other existing
like SWARAM, 45.11% higher than HHOCFR, and 22.73%
higher than ECEEC. Thus, the EMSO-WSN framework is
validated as a scalable and energy-efficient solution for modern
WSN-IoT infrastructures.

Keywords — Wireless Sensor Networks, Internet of Things, Energy
Efficiency, Cluster Head Selection, Mantis Search Algorithm,
Routing Optimization.

1. INTRODUCTION

WSNs are widely used in many different industries,
including the IoT, agriculture, and environmental monitoring
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[1]. A key component of these applications is wireless
communication between WSN nodes [2]. It provides devices
with perception, computation, and decision-making abilities
and links them via wireless communication technologies [3].
This makes it possible for the IoT to receive and send data
instantly, automate data exchange and collaboration, increase
operational and production efficiency, and reduce expenses.
In addition, the IoT uses predictive maintenance and big data
analysis to give businesses insight into customer demands
and market trends, enabling them to make better informed
decisions [4]. Furthermore, the use of IoT in domains like
health monitoring and smart homes is enhancing people's
quality of life and advancing sustainable development [5].
Thus, the Internet of Things offers substantial benefits in
terms of increasing productivity, cutting expenses, gaining
new insights, raising standards of living, and encouraging
sustainable growth [6]. A network is important and faces
several challenges, such as sensor nodes' limited energy, their
vast and random dispersion, and other features [7].

By maximizing network lifespan, decreasing EC,
choosing the best pathways, and ensuring low latency, WSN
routing optimization aims to increase network performance
and energy use efficiency [8]. Transmission scheduling and
path selection are two methods and systems that are used to
guarantee accurate and efficient data transfer between nodes
[9]. In WSNs, research on routing optimization is crucial for
enhancing network performance, prolonging NL, ensuring
dependable data transfer, and enabling real-time applications
[10]. WSN systems can become more intelligent,
dependable, and efficient by implementing efficient route
optimization methods and techniques. In the IoT, WSN
routing optimization is crucial because it can increase
network lifespan, boost energy efficiency and performance,
offer dependable data transmission, and enable real-time
applications across a range of application domains.
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Consequently, the advancement and wuse of animal
networking are greatly aided by routing optimization in
WSNs [11,12]. Routing optimization for WSNs is challenged
by several issues such as bandwidth and capacity limitations,
network topology dynamics, and energy constraints [13]. To
tackle these challenges, a novel Energy-efficient Mantis
Search Optimization for Wireless Sensor Networks (EMSO-
WSN) framework has been proposed to minimize the EC and
increase the NL in the WSN. The major contributions of the
proposed EMSO-WSN techniques are as follows:

e The primary goal of the research is to develop the
EMSO-WSN framework to enhance NL and reduce
EC in IoT-enabled WSNs.

e The Fuzzy C-Means algorithm is used for adaptive
soft clustering, improving energy balance and data
aggregation among sensor nodes.

e An Adaptive Walrus Optimization algorithm is
proposed to select optimal CH based on energy and
coverage efficiency.

e A MSA is employed for dynamic routing, ensuring
reduced latency and improved throughput in dense
IoT networks.

e The EMSO-WSN approach achieved a 40%
increase in throughput and extended NL up to 350
rounds compared to existing methods.

The organization of the paper is structured as follows.
Section 2 covers the details of the literature review. Section
3 offers a description of the developed EMSO-WSN model.
Section 4 presents the experiment's findings. Section 5
contains the future work and conclusion

2. LITERATURE REVIEW

Recent advancements in WSN-IoT routing optimization
have focused on improving energy efficiency, cluster
stability, and data transmission reliability. Techniques such
as fuzzy clustering with Particle Swarm Optimization (PSO),
osprey-based optimization, federated deep reinforcement
learning, and Harris hawk’s optimization have been explored
to address challenges like high message overhead, frequent
re-clustering, and limited NL. Despite these efforts, existing
approaches still face issues with scalability, dynamic
adaptation, and secure data transfer.

In 2024, Lei [14] suggested a novel hybrid energy-aware
IoT routing method that combined fuzzy clustering with the
PSO algorithm. However, multi-hop data transfers,
communication, and the inherent challenges of wireless
networks are critical to the IoT infrastructures' lifespan and
efficacy.

In 2024, Somula et al., [15] designed an osprey
optimization algorithm based on energy-efficient cluster
head selection (SWARAM) to select the optimal CH in a
WSN-based IoT. This approach increased the 10% NL and
the packet delivery ratio by 10%, respectively. In contrast,
the SWARAM performance was evaluated in real-time
factors such as load balancing, mobility, security, and fault
tolerance.

In 2024, Suresh et al., [16] provided an energy-efficient
and adaptable routing system that considered a message

28

overhead, temporal complexity, data sum rate,
communication delay, and scalability. In dynamic network
scenarios, the suggested study method makes use of
Federated Deep Reinforcement Learning (FDRL), which
permits adaptive routing and distributed decision-making.

In 2024, Jing [17] identified hot spot issues, high
message overhead for cluster formation, and frequent cluster
maintenance remain the primary clustering and routing
protocol difficulties. To improve the NL, their study
suggested a novel protocol called Harris Hark Optimization
Clustering with Fuzzy Routing (HHOCFR), which combined
fuzzy routing and Harris Harks Optimization Clustering.

Additionally, neighborhood centroid opposition-based
learning mechanisms and excellent point set-based
population initialization are employed to speed up

convergence and prevent becoming stuck in local optima.

In 2024, Aravind [18] offered a geographic routing
protocol that is energy-efficient (EEG) based on the specified
six-fold objective function. In this case, the optimal route
selection considers overhead, latency, Quality of Service
(QoS), energy, distance, and trust. Nevertheless, their
research expanded by gathering data in real time and adding
other restrictions like time and temperature.

In 2024, Phalaagae et al., [19] suggested a new security
method called the Randomized Bi-Phase Authentication
Scheme (RBAS), which strengthened internal and external
network security by integrating digital watermarking
techniques. Successful deployment in the real world depends
on improved security measures to counter emerging threats
and researched, cost-effective deployment techniques.

In 2024, Karim et al., [20] created a protocol called
Serverless Wireless Sensor Networks (SWSN) called
Enhanced Centroid-based Energy Efficient Clustering
(ECEEC). The suggested method offered stateless execution,
automated scalability, and economical services. However,
the suggested protocol added the security feature of other
networks, such as Wireless Body Area Networks (WBAN)
and the [oT.

Despite significant advances in routing protocols and
optimization strategies for WSNs within the [oT domain,
several persistent challenges remain. Existing approaches
often struggle with issues such as high EC, limited NL,
communication  overhead, scalability in dynamic
environments, and security vulnerabilities. To tackle these
challenges, a novel Energy-efficient Mantis Search
Optimization for Wireless Sensor Networks (EMSO-WSN)
has been proposed, which will be covered in the next section.

3. PROPOSED METHODOLOGY

In this section, the proposed Energy-efficient Mantis
Search Optimization for Wireless Sensor Networks (EMSO-
WSN) framework is described in detail. It consists of three
key phases such as clustering via Fuzzy C-Means (FCM),
CHS through Adaptive Walrus Optimization (AWO), and
routing optimization using MSA. Each phase contributes to
minimizing EC, enhancing CHS, and optimizing route
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discovery to ensure efficient and prolonged network
operation. Figure 1 shows the EMSO-WSN framework

Adaptive Walrus Optimization

Cluster Head selection

@)
N

Base station

Mantis search optimization

Network lifetime

Node density

Figure 1. Overall architecture of EMSO-WSN

3.1. Clustering Via Fuzzy C-Means (FCM)

FCM is employed to handle node clustering with
uncertainty and vagueness, typical in WSN deployments. It
assigns sensor nodes to multiple clusters based on
membership values, minimizing the distance between nodes
and cluster centers. This soft clustering method enhances
data aggregation and balances network load, reducing EC.
The fuzzy C-means (FCMs) algorithm is the most popular
fuzzy clustering technique. The aim of FCM is to minimize
the total distance between the instances and the cluster
centers. The objective of WSNs is to group sensor nodes of
N into distinct clusters of k. It is possible to formulate the
FCM objective function for clustering in WSNs as follows:

w = ZZ=1 Zl’ftl:l #m d(x’ul xc)z!u = 1;21 e, n w =

12..k ()
1
Huw = —Z_ @
Zk d(xy,cyw)m—1
W=1d(xy,cp)
Haw € [0,1] 3)
_ Z?(I»‘uw)mxu
CW - Z?(ﬂuw)m (4)

Most applications use Equation (2), where m is the value
of the fuzzifier and p is the membership of node u to cluster
w. Moreover, C,, stands for cluster centroid. FCM Clustering
ensures flexible and adaptive clustering for data uncertainty
which leads to more stable and energy-efficient groupings of
sensor nodes

3.2.Cluster
Optimization

Head Selection via Adaptive Walrus

AWO simulates walrus behavioral strategies feeding,
migration, and escaping predators, to exploit and explore the
space search for optimal CH. It dynamically balances local

29

and global search to identify nodes with maximum coverage
and minimum energy usage, ensuring effective cluster
leadership and improved network stability. AWO consists of
three phases such as exploration, Migration, and exploitation
are discussed below

Phase 1: Strategy of feeding (exploration): This is a basic
feeding strategy to serves as the mathematical model to
update the walrus position into a new position, and it is
generated by Equation (5) to enhance the objective function
value.

Zg‘z =Zggtrandg, WX, —134.244) ©)
7 - (2 F <Fa, ©
d Zg, else,

According to the initial phase, the newly generated d™
walrus is located at Zgl, qul is the value of the fitness
function, WX is the best candidate solution, zg ! is the ™
dimension, [0,1] is the internal of random values randg,,
Iy is the algorithm capacity that enhances the use of
exploration.

Phase 2: Migration: As the weather warms, the AWO
algorithm uses the walrus's natural migration pattern to drive
the exploration of search regions by moving to rocky beaches
or into late-summer outcrops. Equation (7) created a new
location. The walrus' original location is replaced by
Equation (8). This new position produces a value for the
improved objective function.

_ Zd,a + Tandd‘a. (Zm'a - Id,a- . Zd,a): Fm < Fd (7)
Zgq trandg,. (zd,a — zm,a), else,

Uy
d,a

Uz U2 .
z, = {zd JF? < Fd,} ®

Zg, else,
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Where zJis the second phase for the newly generated
location for the d walrus, quzis the value of the fitness
function, Zgj- is the a™ dimension, m # d, and Z,,,m €
{,2,..., N} are the walrus selected position to migrate the d™
term, F, is the fitness function value, and z,,, is aj th
dimension.

Phase 3: Escaping from predators and fighting off
(exploitation): AWO can exploit the local search of the
problem-solving space around the candidate solution to
enhance the natural behavior simulation. Equations 9 & 10a
re used to generate the random new position within the
neighbourhood, and these positions improve the objective
function values and replace the previous position in Equation

(11):

Us _ t t
Zd_a =Zga + (le local,a + (ue local,a —

rand. letlocal,a)) x LF 9)
let = La
localbounds: { tocata e (10)
U€ 1ocala = —5
Uz Uz .
zy =1t <Fa (1)
Zy, else,

In the third phase of the walrus Zg ® is the newly
generated location of d™. Where Z; ® is the a th dimension,
the iteration contour represented by t, Fj is its fitness
function value, ue, and le, are the local lower bounds and
local upper bound of d' variable allowance respectively, for
the candidate solution neighbourhood is a local search
simulation. WaOA is equipped levy distribution to enhance
the Levy movement of LF vector. The formation of the levy
flying function is described in Equation (12):

LF = 0.01 x 27 (12)
vl
_ I‘<1+y><sin(”7y ) %
°= (74_@%(%—)) (42

Thus, the AWO for CHS leverages bio-inspired
strategies for selecting optimal CH, which enhances energy
distribution and extends NL

3.3. Routing via Mantis search optimization

Mantis search optimization (MSA) optimizes routing
paths through the behavioral modeling of mantis hunting
strategies, combining exploration, exploitation, and sexual
cannibalism phases. By integrating Lévy flights and strike
velocity adaptations, MSA ensures efficient route discovery
and robust data delivery, reducing latency and maximizing
throughput in dynamic WSN environments.

3.3.1. Initial Population

In MSA, each mantis stands for a possible fix for an
optimization issue. It is possible to generate a size of N
solutions x D and x is a two-dimensional matrix. Moreover,
an arbitrary vector initializes the upper and lower bound
optimization explained in Equation (14).
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where X! represent Mantis i's location at the t"
assessment function; t; — X!, and X% are the upper and
bottom bounds of j-dimension; and 7 is a vector that
generate random values among 0 and 1 of the uniform
distribution.

3.3.2. Exploration Stage

In MSA, normal distribution and Lévy flight are
combined to encompass the size of both large and small step,
which symbolizes the predators' search for victims outside of
their hiding spots. Lévy flights are randomized with a step
length that is determined by the Lévy distribution. The
power-law formula of an index are typically expressed as
(x)~|x|7*7F, where 0 < B < 2. The following equation
(15) represents a mathematical expression for the Lévy
distribution in its simplified form:

Loy, ¢) =
%exp(—y/(Zx - 2¢))mif0 <p<x<oo (15)
0 ifx <0

where y is a scaling parameter, and ¢ > 0 indicates a
minimum step. The model is obviously changed to Equation
(16)asy — oo:

1
L(x,]/, ¢) = x1_5 L

2

(16)

3.3.3. Exploitation Stage

With a constant value, the sigmoid curve is used to
determine the mantis size that strike the velocity of prey
attacking. The magnitude of the striking velocity (v;) of a
mantis's front legs in the direction of its prey can be
quantitatively determined using Equation (17):
1
= e

(a7

Where p is the gravity of Mantis Strike acceleration to
ensure the constant value of experimental findings. (1) is a
number that generates between -1 and -2 to control the rate
of gravitational acceleration; 0 and 1 are the velocity of
hitting magnitude that maximize and minimize the value of -
1 and -2. The following formula modifies the behavior of
each mantis as it grasps its prey in Equation (18):

_ ()
T 20

Us

t+1

t
i + v, X (x]-* — xi'j)

(18)

where the prey's location is indicated by xl-t_ ; to speed the
attacking process and minimize the distance; xf_;-rl indicates
a new position of the evaluation function, and t + 1 shows
the j* dimension of i mantis; x; shows the best solution for

the present location.
3.3.4. Sexual Cannibalism

Mantises pray for females to eat males in immediate
copulation, known as sexual cannibalism. During or after
mating, the female consumes the male, is expressed in
Equation (19):
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.

= %L x cos(2ml) X u

(19)

where u denotes the portion of the male that was eaten,
%! stands for the male, and the phrase (cos (27l)) denotes
the freedom for females and moves to males for the eating
process. Finally, MSA for Routing delivers reliable and
dynamic route optimization through predator-prey-inspired
behavior, which improves data delivery and reduces network
congestion

4. RESULTS AND DISCUSSION

Experimental findings of the proposed EMSO-WSN are
presented in this section. The Network Simulator (NS2),
equipped with 4 GB of RAM and an Intel Core CPU, was
utilized for implementation

4.1. Performance Metrics

The EMSO-WSN model is evaluated using key metrics
such as NL, EC, delay, number of CH, DPD, and throughput.
Simulations show that EMSO-WSN significantly
outperforms existing protocols like SWARAM [15],
HHOCFR [17], and ECEEC [20].

B SWARAM
B HHOCFR
== ECEEC

B EMSO-WSN (Fropased)

Metwork Lifetime (Rounds)

250

0
Number of Nodes

50 00 450 500

Figure 2. Comparison of NL with different nodes

In Figure 2, the NL steadily increases with the number
of nodes. The proposed EMSO-WSN achieves higher
performance than that of other existing methods, SWARAM
[15], HHO-CFR [17], and ECEEC [20]. Specifically,
EMSO-WSN achieves an NL of 260 rounds with 100 nodes
and reaches up to 320 rounds with 500 nodes. In contrast,
SWARAM ranges from 190 to 280 rounds, HHO-CFR from
200 to 290 rounds, and ECEEC from 220 to 300 rounds as
node count increases. This demonstrates the superior energy-
aware CH optimization capability of EMSO-WSN.
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—s— HHOCFR g
ECEEC
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)
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Number of Nodes

Figure 3. Performance based on EC
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Figure 3 presents the EC, where the proposed EMSO-
WSN shows better performance than existing methods like
SWARAM [15], HHOCEFR [17], and ECEEC [20]. It starts
with the lowest energy usage of 6 joules at 100 nodes and
gradually increases to only 33 joules at 500 nodes. On the
other hand, SWARAM’s EC ranges from 9 J to 36 J, HHO-
CFR from 10 J to 40 J, and ECEEC from 11 J to 39 J. These
result shows that the proposed EMSO-WSN ensures reduce
the energy usage, high NL, and make high efficient with
scalable solution for WSN-IoT environments.

B SWARAM
B HHOCFR
=1 eceeC

B EMSOWSN (Proposed)

Delay (s}
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Number of Nodes
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Figure 4. Delay Comparison

Figure 4 shows the delay (in seconds) versus the number
of nodes for four protocols. The proposed EMSO-WSN
protocol consistently exhibits the lowest delay, starting at
0.46s (100 nodes) and rising to 0.69s (500 nodes). In contrast,
SWARAM shows the highest delay, increasing from 0.88s to
0.99s. HHOCFR and ECEEC have intermediate delays,
ranging from 0.84s5—0.93s and 0.815—0.89s, respectively.
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Figure 5. Number of selected CHs

Figure 5 shows CHS that increase the number of nodes
range from 40 to 200. In that Proposed EMSO-WSN
consistently selects more CHs and reach 190 CHs at 200
nodes, while SWARAM selects the least (about 160 CHs).
HHOCFR and ECEEC peaks around 170—180 CHs.
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Figure 6. Packets Received by Base Station (BS) over
Transmission Rounds for Different Methods

The performance of packets received by the BS is
displayed in Figure 6. At 500 rounds, EMSO-WSN delivers
about 350 packets, whereas SWARAM only manages around
310 packets. HHOCFR and ECEEC perform moderately,
with about 320-330 packets received. This shows that the
proposed EMSO-WSN improved delivery reliability
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Figure 7. Throughput Vs Number of Sensor Nodes

The Proposed EMSO-WSN achieves the highest
throughput, among other existing approaches, SWARAM
[15], HHOCEFR [17], and ECEEC [20]. At a network size of
500 sensor nodes, EMSO-WSN delivers a throughput that is
58.75% higher than SWARAM, 45.11% higher than
HHOCFR, and 22.73% higher than ECEEC. Figure 7 shows
EMSO-WSN network performance, with superior scalability
and data transmission efficiency.

5. CONCLUSION

This research presented an Energy-efficient Mantis
Search Optimization for Wireless Sensor Networks (EMSO-
WSN) framework to enhance the routing efficiency in WSN-
IoT. It included the FCM clustering, AWO-based CHS, and
MSA routing to minimize the EC, ensure reliable data
transmission, and extend the NL. The experimental
framework was simulated by Python using NS2 for fine-
grain throughput. The EMSO-WSN model is evaluated using
key metrics such as NL, EC, delay, number of CH, DPD, and
throughput. This shows the comparison of the proposed
EMSO-WSN reduces less EC of 6 Joules at 100 nodes than
that of other existing methods like SWARAM of 9 J, HHO-
CFR of 10 J, and ECEEC of 11 J, respectively. The
throughput of proposed EMSO-WSN achieves 58.75%
higher than that of other existing like SWARAM, 45.11%
higher than HHOCFR, and 22.73% higher than ECEEC.
Despite this achievement, the proposed EMSO-WSN lacks
reliance on static assumptions and real-time mobility
handling. Future research focuses on mobile nodes, adapting
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real-time algorithms, a security layer to handle the cyber-
physical threats, and large-scale deployments to further
improve scalability and resilience.
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