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Abstract – Wireless Sensor Networks (WSNs) play a critical 

role in Internet of Things (IoT) applications that offer 

automation and data exchange across various domains such as 

environmental monitoring, healthcare, and agriculture. WSN 

frequently suffers from unstable topology, energy limitations, 

and communication overhead that damage the network 

performance. To overcome these issues, this study introduced 

the Energy-efficient Mantis Search Optimization for Wireless 

Sensor Networks (EMSO-WSN) framework to enhance the 

routing efficiency in WSN-IoT. This model includes Fuzzy C-

Means (FCM) for adaptive clustering, Adaptive Walrus 

Optimization (AWO) for efficient Cluster Head Selection 

(CHS), and Mantis Search Algorithm (MSA) for robust route 

optimization. This research focuses on improving the WSN in 

IoT applications that will enhance the network lifetime and 

energy efficiency. The proposed EMSO-WSN emphasizes 

multi-phase decision making, behavioral modelling, and soft 

clustering, ensures high scalability, and reduces latency. 

Finally, the experimental framework was simulated by Python 

using NS2 for fine-grain throughput and computational 

efficiency. The EMSO-WSN model is evaluated using key 

metrics such as Network Lifetime (NL), Energy Consumption 

(EC), delay, number of CH, Data Packet Delivery (DPD), and 

throughput. This shows the comparison of the proposed EMSO-

WSN reduces less EC of 6 Joules at 100 nodes than that of other 

existing methods like SWARAM of 9 J, HHO-CFR of 10 J, and 

ECEEC of 11 J, respectively. The throughput of proposed 

EMSO-WSN achieves 58.75% higher than that of other existing 

like SWARAM, 45.11% higher than HHOCFR, and 22.73% 

higher than ECEEC. Thus, the EMSO-WSN framework is 

validated as a scalable and energy-efficient solution for modern 

WSN-IoT infrastructures. 

Keywords – Wireless Sensor Networks, Internet of Things, Energy 

Efficiency, Cluster Head Selection, Mantis Search Algorithm, 

Routing Optimization. 

1. INTRODUCTION 

WSNs are widely used in many different industries, 

including the IoT, agriculture, and environmental monitoring 

[1]. A key component of these applications is wireless 

communication between WSN nodes [2]. It provides devices 

with perception, computation, and decision-making abilities 

and links them via wireless communication technologies [3]. 

This makes it possible for the IoT to receive and send data 

instantly, automate data exchange and collaboration, increase 

operational and production efficiency, and reduce expenses. 

In addition, the IoT uses predictive maintenance and big data 

analysis to give businesses insight into customer demands 

and market trends, enabling them to make better informed 

decisions [4]. Furthermore, the use of IoT in domains like 

health monitoring and smart homes is enhancing people's 

quality of life and advancing sustainable development [5]. 

Thus, the Internet of Things offers substantial benefits in 

terms of increasing productivity, cutting expenses, gaining 

new insights, raising standards of living, and encouraging 

sustainable growth [6]. A network is important and faces 

several challenges, such as sensor nodes' limited energy, their 

vast and random dispersion, and other features [7]. 

By maximizing network lifespan, decreasing EC, 

choosing the best pathways, and ensuring low latency, WSN 

routing optimization aims to increase network performance 

and energy use efficiency [8]. Transmission scheduling and 

path selection are two methods and systems that are used to 

guarantee accurate and efficient data transfer between nodes 

[9]. In WSNs, research on routing optimization is crucial for 

enhancing network performance, prolonging NL, ensuring 

dependable data transfer, and enabling real-time applications 

[10]. WSN systems can become more intelligent, 

dependable, and efficient by implementing efficient route 

optimization methods and techniques. In the IoT, WSN 

routing optimization is crucial because it can increase 

network lifespan, boost energy efficiency and performance, 

offer dependable data transmission, and enable real-time 

applications across a range of application domains. 
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Consequently, the advancement and use of animal 

networking are greatly aided by routing optimization in 

WSNs [11,12]. Routing optimization for WSNs is challenged 

by several issues such as bandwidth and capacity limitations, 

network topology dynamics, and energy constraints [13]. To 

tackle these challenges, a novel Energy-efficient Mantis 

Search Optimization for Wireless Sensor Networks (EMSO-

WSN) framework has been proposed to minimize the EC and 

increase the NL in the WSN. The major contributions of the 

proposed EMSO-WSN techniques are as follows: 

• The primary goal of the research is to develop the 

EMSO-WSN framework to enhance NL and reduce 

EC in IoT-enabled WSNs. 

• The Fuzzy C-Means algorithm is used for adaptive 

soft clustering, improving energy balance and data 

aggregation among sensor nodes. 

• An Adaptive Walrus Optimization algorithm is 

proposed to select optimal CH based on energy and 

coverage efficiency. 

• A MSA is employed for dynamic routing, ensuring 

reduced latency and improved throughput in dense 

IoT networks. 

• The EMSO-WSN approach achieved a 40% 

increase in throughput and extended NL up to 350 

rounds compared to existing methods. 

The organization of the paper is structured as follows. 

Section 2 covers the details of the literature review. Section 

3 offers a description of the developed EMSO-WSN model. 

Section 4 presents the experiment's findings. Section 5 

contains the future work and conclusion 

2. LITERATURE REVIEW 

Recent advancements in WSN-IoT routing optimization 

have focused on improving energy efficiency, cluster 

stability, and data transmission reliability. Techniques such 

as fuzzy clustering with Particle Swarm Optimization (PSO), 

osprey-based optimization, federated deep reinforcement 

learning, and Harris hawk’s optimization have been explored 

to address challenges like high message overhead, frequent 

re-clustering, and limited NL. Despite these efforts, existing 

approaches still face issues with scalability, dynamic 

adaptation, and secure data transfer.  

In 2024, Lei [14] suggested a novel hybrid energy-aware 

IoT routing method that combined fuzzy clustering with the 

PSO algorithm. However, multi-hop data transfers, 

communication, and the inherent challenges of wireless 

networks are critical to the IoT infrastructures' lifespan and 

efficacy. 

In 2024, Somula et al., [15] designed an osprey 

optimization algorithm based on energy-efficient cluster 

head selection (SWARAM) to select the optimal CH in a 

WSN-based IoT. This approach increased the 10% NL and 

the packet delivery ratio by 10%, respectively. In contrast, 

the SWARAM performance was evaluated in real-time 

factors such as load balancing, mobility, security, and fault 

tolerance. 

In 2024, Suresh et al., [16] provided an energy-efficient 

and adaptable routing system that considered a message 

overhead, temporal complexity, data sum rate, 

communication delay, and scalability. In dynamic network 

scenarios, the suggested study method makes use of 

Federated Deep Reinforcement Learning  (FDRL), which 

permits adaptive routing and distributed decision-making. 

In 2024, Jing [17] identified hot spot issues, high 

message overhead for cluster formation, and frequent cluster 

maintenance remain the primary clustering and routing 

protocol difficulties. To improve the NL, their study 

suggested a novel protocol called Harris Hark Optimization 

Clustering with Fuzzy Routing (HHOCFR), which combined 

fuzzy routing and Harris Harks Optimization Clustering. 

Additionally, neighborhood centroid opposition-based 

learning mechanisms and excellent point set-based 

population initialization are employed to speed up 

convergence and prevent becoming stuck in local optima. 

In 2024, Aravind [18] offered a geographic routing 

protocol that is energy-efficient (EEG) based on the specified 

six-fold objective function. In this case, the optimal route 

selection considers overhead, latency, Quality of Service 

(QoS), energy, distance, and trust. Nevertheless, their 

research expanded by gathering data in real time and adding 

other restrictions like time and temperature. 

In 2024, Phalaagae et al., [19] suggested a new security 

method called the Randomized Bi-Phase Authentication 

Scheme (RBAS), which strengthened internal and external 

network security by integrating digital watermarking 

techniques. Successful deployment in the real world depends 

on improved security measures to counter emerging threats 

and researched, cost-effective deployment techniques. 

In 2024, Karim et al., [20] created a protocol called 

Serverless Wireless Sensor Networks (SWSN) called 

Enhanced Centroid-based Energy Efficient Clustering 

(ECEEC). The suggested method offered stateless execution, 

automated scalability, and economical services. However, 

the suggested protocol added the security feature of other 

networks, such as Wireless Body Area Networks (WBAN) 

and the IoT.  

Despite significant advances in routing protocols and 

optimization strategies for WSNs within the IoT domain, 

several persistent challenges remain. Existing approaches 

often struggle with issues such as high EC, limited NL, 

communication overhead, scalability in dynamic 

environments, and security vulnerabilities. To tackle these 

challenges, a novel Energy-efficient Mantis Search 

Optimization for Wireless Sensor Networks (EMSO-WSN) 

has been proposed, which will be covered in the next section. 

 

3. PROPOSED METHODOLOGY 

In this section, the proposed Energy-efficient Mantis 

Search Optimization for Wireless Sensor Networks (EMSO-

WSN) framework is described in detail. It consists of three 

key phases such as clustering via Fuzzy C-Means (FCM), 

CHS through Adaptive Walrus Optimization (AWO), and 

routing optimization using MSA. Each phase contributes to 

minimizing EC, enhancing CHS, and optimizing route 
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discovery to ensure efficient and prolonged network 

operation. Figure 1 shows the EMSO-WSN framework 

 

 

Figure 1. Overall architecture of EMSO-WSN 

3.1. Clustering Via Fuzzy C-Means (FCM) 

FCM is employed to handle node clustering with 

uncertainty and vagueness, typical in WSN deployments. It 

assigns sensor nodes to multiple clusters based on 

membership values, minimizing the distance between nodes 

and cluster centers. This soft clustering method enhances 

data aggregation and balances network load, reducing EC. 

The fuzzy C-means (FCMs) algorithm is the most popular 

fuzzy clustering technique. The aim of FCM is to minimize 

the total distance between the instances and the cluster 

centers. The objective of WSNs is to group sensor nodes of 

N into distinct clusters of k. It is possible to formulate the 

FCM objective function for clustering in WSNs as follows: 

𝑊 = ∑ ∑ 𝜇𝑚𝑘
𝑤=1 𝑑(𝑥𝑢 , 𝑥𝑐)2, 𝑢 = 1,2, … , 𝑛       𝑤 =𝑛

𝑢=1

1,2 … , 𝑘                                                                                (1) 

𝜇𝑢𝑤 =
1

∑
𝑑(𝑥𝑢,𝑐𝑤)

𝑑(𝑥𝑢,𝑐𝑘)

2
𝑚−1𝑘

𝑤=1

                                                  (2) 

𝜇𝑢𝑤 ∈ [0,1]                                                                                     (3) 

𝐶𝑤 =
∑ (𝜇𝑢𝑤)𝑚𝑥𝑢

𝑛
1

∑ (𝜇𝑢𝑤)𝑚𝑛
1

                                                          (4) 

Most applications use Equation (2), where 𝑚 is the value 

of the fuzzifier and 𝜇 is the membership of node u to cluster 

𝑤. Moreover, 𝐶𝑤 stands for cluster centroid. FCM Clustering 

ensures flexible and adaptive clustering for data uncertainty 

which leads to more stable and energy-efficient groupings of 

sensor nodes 

 

3.2.Cluster Head Selection via Adaptive Walrus 

Optimization 

AWO simulates walrus behavioral strategies feeding, 

migration, and escaping predators, to exploit and explore the 

space search for optimal CH. It dynamically balances local 

and global search to identify nodes with maximum coverage 

and minimum energy usage, ensuring effective cluster 

leadership and improved network stability. AWO consists of 

three phases such as exploration, Migration, and exploitation 

are discussed below 

Phase 1: Strategy of feeding (exploration): This is a basic 

feeding strategy to serves as the mathematical model to 

update the walrus position into a new position, and it is 

generated by Equation (5) to enhance the objective function 

value.  

𝑍𝑑,𝑎
𝑈1 = 𝑧𝑑,𝑎 + 𝑟𝑎𝑛𝑑𝑑,𝑎. (𝑊𝑋𝑎 − 𝐼𝑑,𝑎. 𝑧𝑑,𝑎)                      (5) 

𝑍𝑑 = {
𝑧𝑑

𝑈1 , 𝐹𝑑
𝑈1 < 𝐹𝑑: ,

𝑍𝑑 , 𝑒𝑙𝑠𝑒,
}                                                         (6) 

According to the initial phase, the newly generated 𝑑th 

walrus is located at  𝑧𝑑
𝑈1 , 𝐹𝑑

𝑈1 is the value of the fitness 

function, 𝑊𝑋 is the best candidate solution, 𝑧𝑑,𝑎
𝑈1  is the 𝑎th 

dimension, [0,1] is the internal of random values  𝑟𝑎𝑛𝑑𝑑,𝑎, 

𝐼𝑑,𝑎 is the algorithm capacity that enhances the use of 

exploration.  

Phase 2: Migration: As the weather warms, the AWO 

algorithm uses the walrus's natural migration pattern to drive 

the exploration of search regions by moving to rocky beaches 

or into late-summer outcrops. Equation (7) created a new 

location. The walrus' original location is replaced by 

Equation (8). This new position produces a value for the 

improved objective function. 

𝑧𝑑,𝑎
𝑈2 = {

𝑧𝑑,𝑎 + 𝑟𝑎𝑛𝑑𝑑,𝑎. (𝑧𝑚,𝑎 − 𝐼𝑑,𝑎. . 𝑧𝑑,𝑎), 𝐹𝑚 < 𝐹𝑑

𝑧𝑑,𝑎 + 𝑟𝑎𝑛𝑑𝑑,𝑎. (𝑧𝑑,𝑎 − 𝑧𝑚,𝑎), 𝑒𝑙𝑠𝑒,
}       (7)                       

𝑍𝑑 = {
𝑧𝑑

𝑈2 , 𝐹𝑑
𝑈2 < 𝐹𝑑;

𝑍𝑑, 𝑒𝑙𝑠𝑒,
}                                                 (8) 
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Where 𝑧𝑑
𝑈is the second phase for the newly generated 

location for the 𝑑th walrus, 𝐹𝑑
𝑈2is the value of the fitness 

function, 𝑧𝑑,𝑗
𝑈2  is the 𝑎th dimension, 𝑚 ≠  𝑑, and 𝑍𝑚, 𝑚 ∈

 {, 2, . . . , 𝑁} are the walrus selected position to migrate the 𝑑th 

term, 𝐹𝑚 is the fitness function value, and 𝑧𝑚,𝑎 is a 𝑗 th 

dimension. 

Phase 3: Escaping from predators and fighting off 

(exploitation): AWO can exploit the local search of the 

problem-solving space around the candidate solution to 

enhance the natural behavior simulation. Equations 9 & 10a 

re used to generate the random new position within the 

neighbourhood, and these positions improve the objective 

function values and replace the previous position in Equation 

(11):  

𝑧𝑑,𝑎
𝑈3 = 𝑧𝑑,𝑎 + (𝑙𝑒𝑡

𝑙𝑜𝑐𝑎𝑙,𝑎 + (𝑢𝑒𝑡
𝑙𝑜𝑐𝑎𝑙,𝑎 −

𝑟𝑎𝑛𝑑. 𝑙𝑒𝑡
𝑙𝑜𝑐𝑎𝑙,𝑎)) × 𝐿𝐹                                                     (9) 

𝑙𝑜𝑐𝑎𝑙𝑏𝑜𝑢𝑛𝑑𝑠: {
𝑙𝑒𝑡

𝑙𝑜𝑐𝑎𝑙,𝑎 =
𝑙𝑒𝑎

𝑡
,

𝑢𝑒𝑡
𝑙𝑜𝑐𝑎𝑙,𝑎 =

𝑢𝑒𝑎

𝑡

, }                              (10) 

𝑍𝑑 = {
𝑧𝑑

𝑈3 , 𝐹𝑑
𝑈𝑧 < 𝐹𝑑;

𝑍𝑑 , 𝑒𝑙𝑠𝑒,
}                                               (11) 

In the third phase of the walrus 𝑧𝑑
𝑈3 is the newly 

generated location of 𝑑th. Where 𝑧𝑑,𝑎
𝑈3  is the 𝑎 th dimension, 

the iteration contour represented by t, 𝐹𝑑
𝑧 is its fitness 

function value,  𝑢𝑒𝑎 and 𝑙𝑒𝑎 are the local lower bounds and 

local upper bound of 𝑑th variable allowance respectively, for 

the candidate solution neighbourhood is a local search 

simulation. WaOA is equipped levy distribution to enhance 

the Levy movement of 𝐿𝐹 vector. The formation of the levy 

flying function is described in Equation (12):     

𝐿𝐹 = 0.01 ×
𝑢×𝜎

|𝑣|
1
𝑟

                                                         (12) 

𝜎 = (
Γ(1+𝛾×𝑠𝑖𝑛(

𝜋𝛾

2
))

Γ(
1+𝛾

2
)×𝛾×2

(
𝜸−
𝟐 )

)

1

𝛾

                                                 (13) 

Thus, the AWO for CHS leverages bio-inspired 

strategies for selecting optimal CH, which enhances energy 

distribution and extends NL 

3.3. Routing via Mantis search optimization 

Mantis search optimization (MSA) optimizes routing 

paths through the behavioral modeling of mantis hunting 

strategies, combining exploration, exploitation, and sexual 

cannibalism phases. By integrating Lévy flights and strike 

velocity adaptations, MSA ensures efficient route discovery 

and robust data delivery, reducing latency and maximizing 

throughput in dynamic WSN environments. 

3.3.1. Initial Population 

In MSA, each mantis stands for a possible fix for an 

optimization issue. It is possible to generate a size of N 

solutions × D and 𝑥 is a two-dimensional matrix. Moreover, 

an arbitrary vector initializes the upper and lower bound 

optimization explained in Equation (14). 

𝑥⃗𝑖
𝑡 = 𝑥⃗𝑙 + 𝑟 × (𝑥⃗𝑢 − 𝑥⃗𝑙)                                           (14) 

where 𝑥⃗𝑖
𝑡 represent Mantis 𝑖's location at the tth 

assessment function; 𝑡; → 𝑥⃗𝑙, and 𝑥⃗𝑢 are the upper and 

bottom bounds of 𝑗-dimension; and  𝑟  is a vector that 

generate random values among 0 and 1 of the uniform 

distribution.  

3.3.2. Exploration Stage 

In MSA, normal distribution and Lévy flight are 

combined to encompass the size of both large and small step, 

which symbolizes the predators' search for victims outside of 

their hiding spots. Lévy flights are randomized with a step 

length that is determined by the Lévy distribution.  The 

power-law formula of an index are typically expressed as 

(𝑥)~|𝑥|−1−𝛽, where 0 <  𝛽 ≤  2. The following equation 

(15) represents a mathematical expression for the Lévy 

distribution in its simplified form:  

𝐿(𝑥, 𝛾, 𝜙) =

{
√

𝛾

2𝜋
𝑒𝑥𝑝(−𝛾/(2𝑥 − 2𝜑))

1

(𝑥−𝜑)1.5 𝑖𝑓0 < 𝜑 < 𝑥 < ∞

0                                               𝑖𝑓𝑥 < 0

   (15) 

where 𝛾 is a scaling parameter, and 𝜑 >  0 indicates a 

minimum step. The model is obviously changed to Equation 

(16) as 𝛾 → ∞: 

𝐿(𝑥, 𝛾, 𝜙) =
1

𝑥1.5 √
𝛾

2𝜋
                                                 (16) 

3.3.3. Exploitation Stage 

With a constant value, the sigmoid curve is used to 

determine the mantis size that strike the velocity of prey 

attacking. The magnitude of the striking velocity (𝑣𝑠) of a 

mantis's front legs in the direction of its prey can be 

quantitatively determined using Equation (17): 

𝑣𝑠 =
1

1+𝑒1𝜌                                                               (17) 

Where 𝜌 is the gravity of Mantis Strike acceleration to 

ensure the constant value of experimental findings. (𝑙) is a 

number that generates between -1 and -2 to control the rate 

of gravitational acceleration; 0 and 1 are the velocity of 

hitting magnitude that maximize and minimize the value of -

1 and -2. The following formula modifies the behavior of 

each mantis as it grasps its prey in Equation (18): 

𝑥𝑖,𝑗
𝑡+1 =

(𝑥𝑖,𝑗
𝑡 +𝑥𝑗

∗)

2.0
+ 𝑣𝑠 × (𝑥𝑗

∗ − 𝑥𝑖,𝑗
𝑡 )                       (18) 

where the prey's location is indicated by 𝑥𝑖,𝑗
𝑡  to speed the 

attacking process and minimize the distance; 𝑥𝑖,𝑗
𝑡+1 indicates 

a new position of the evaluation function, and  𝑡 +  1 shows 

the jth dimension of ith mantis; 𝑥𝑗
∗ shows the best solution for 

the present location.  

3.3.4. Sexual Cannibalism 

Mantises pray for females to eat males in immediate 

copulation, known as sexual cannibalism.  During or after 

mating, the female consumes the male, is expressed in 

Equation (19): 
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𝑥⃗𝑖
𝑡+1 = 𝑥⃗𝑎

𝑡 × 𝑐𝑜𝑠(2𝜋𝑙) × 𝜇                                        (19) 

where 𝜇 denotes the portion of the male that was eaten, 

𝑥⃗𝑎
𝑡  stands for the male, and the phrase (𝑐𝑜𝑠 (2𝜋𝑙)) denotes 

the freedom for females and moves to males for the eating 

process. Finally, MSA for Routing delivers reliable and 

dynamic route optimization through predator-prey-inspired 

behavior, which improves data delivery and reduces network 

congestion 

4. RESULTS AND DISCUSSION 

Experimental findings of the proposed EMSO-WSN are 

presented in this section. The Network Simulator (NS2), 

equipped with 4 GB of RAM and an Intel Core CPU, was 

utilized for implementation 

4.1. Performance Metrics 

The EMSO-WSN model is evaluated using key metrics 

such as NL, EC, delay, number of CH, DPD, and throughput. 

Simulations show that EMSO-WSN significantly 

outperforms existing protocols like SWARAM [15], 

HHOCFR [17], and ECEEC [20]. 

 

Figure 2. Comparison of NL with different nodes 

In Figure 2, the NL steadily increases with the number 

of nodes. The proposed EMSO-WSN achieves higher 

performance than that of other existing methods, SWARAM 

[15], HHO-CFR [17], and ECEEC [20]. Specifically, 

EMSO-WSN achieves an NL of 260 rounds with 100 nodes 

and reaches up to 320 rounds with 500 nodes. In contrast, 

SWARAM ranges from 190 to 280 rounds, HHO-CFR from 

200 to 290 rounds, and ECEEC from 220 to 300 rounds as 

node count increases. This demonstrates the superior energy-

aware CH optimization capability of EMSO-WSN. 

 

Figure 3. Performance based on EC 

Figure 3 presents the EC, where the proposed EMSO-

WSN shows better performance than existing methods like 

SWARAM [15], HHOCFR [17], and ECEEC [20]. It starts 

with the lowest energy usage of 6 joules at 100 nodes and 

gradually increases to only 33 joules at 500 nodes. On the 

other hand, SWARAM’s EC ranges from 9 J to 36 J, HHO-

CFR from 10 J to 40 J, and ECEEC from 11 J to 39 J. These 

result shows that the proposed EMSO-WSN ensures reduce 

the energy usage, high NL, and make high efficient with 

scalable solution for WSN-IoT environments. 

 

Figure 4. Delay Comparison 

Figure 4 shows the delay (in seconds) versus the number 

of nodes for four protocols. The proposed EMSO-WSN 

protocol consistently exhibits the lowest delay, starting at 

0.46s (100 nodes) and rising to 0.69s (500 nodes). In contrast, 

SWARAM shows the highest delay, increasing from 0.88s to 

0.99s. HHOCFR and ECEEC have intermediate delays, 

ranging from 0.84s–0.93s and 0.81s–0.89s, respectively. 

 

Figure 5. Number of selected CHs 

Figure 5 shows CHS that increase the number of nodes 

range from 40 to 200. In that Proposed EMSO-WSN 

consistently selects more CHs and reach 190 CHs at 200 

nodes, while SWARAM selects the least (about 160 CHs). 

HHOCFR and ECEEC peaks around 170–180 CHs. 
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Figure 6. Packets Received by Base Station (BS) over 

Transmission Rounds for Different Methods 

The performance of packets received by the BS is 

displayed in Figure 6. At 500 rounds, EMSO-WSN delivers 

about 350 packets, whereas SWARAM only manages around 

310 packets. HHOCFR and ECEEC perform moderately, 

with about 320–330 packets received. This shows that the 

proposed EMSO-WSN improved delivery reliability 

 

Figure 7. Throughput Vs Number of Sensor Nodes 

The Proposed EMSO-WSN achieves the highest 

throughput, among other existing approaches, SWARAM 

[15], HHOCFR [17], and ECEEC [20]. At a network size of 

500 sensor nodes, EMSO-WSN delivers a throughput that is 

58.75% higher than SWARAM, 45.11% higher than 

HHOCFR, and 22.73% higher than ECEEC. Figure 7 shows 

EMSO-WSN network performance, with superior scalability 

and data transmission efficiency. 

5. CONCLUSION 

This research presented an Energy-efficient Mantis 

Search Optimization for Wireless Sensor Networks (EMSO-

WSN) framework to enhance the routing efficiency in WSN-

IoT. It included the FCM clustering, AWO-based CHS, and 

MSA routing to minimize the EC, ensure reliable data 

transmission, and extend the NL. The experimental 

framework was simulated by Python using NS2 for fine-

grain throughput. The EMSO-WSN model is evaluated using 

key metrics such as NL, EC, delay, number of CH, DPD, and 

throughput. This shows the comparison of the proposed 

EMSO-WSN reduces less EC of 6 Joules at 100 nodes than 

that of other existing methods like SWARAM of 9 J, HHO-

CFR of 10 J, and ECEEC of 11 J, respectively. The 

throughput of proposed EMSO-WSN achieves 58.75% 

higher than that of other existing like SWARAM, 45.11% 

higher than HHOCFR, and 22.73% higher than ECEEC. 

Despite this achievement, the proposed EMSO-WSN lacks 

reliance on static assumptions and real-time mobility 

handling. Future research focuses on mobile nodes, adapting 

real-time algorithms, a security layer to handle the cyber-

physical threats, and large-scale deployments to further 

improve scalability and resilience. 
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