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Abstract – Healthcare monitoring is the process of assessing an 

individual's physical, functional, or cognitive health using a 

range of approaches in order to detect changes, manage 

symptoms, and avoid serious health issues.     Existing 

healthcare monitoring systems, on the other hand, face a 

number of challenges, including technical issues such as 

network connectivity and data security, patient-related barriers 

such as device adoption and digital literacy, system integration 

issues due to interoperability, and workforce constraints such 

as shortages and burnout.     To address these issues, a Deep 

Learning-based TCN-BiGRU Healthcare Monitoring 

Framework for IoT is proposed (DL-TBH-IoT). Wireless 

sensors on the sensing layer collect physiological data, which is 

then aggregated by the connection layer and sent to the cloud 

layer.  The cloud layer employs a Fuzzy Information System 

(FIS) to handle missing values and uncertainties before 

forecasting data with the TCN-BiGRU algorithm, which 

classifies patients as healthy or diseased based on medical 

information.     The projected findings are delivered to patients, 

physicians, hospitals, or caretakers through the user application 

layer, allowing for fast intervention. The proposed technique is 

assessed against industry-standard performance indicators. 

The experimental findings show that DL-TBH-IoT achieves 

98.5% accuracy, beating other approaches including EHMS 

(64%), FETCH (86%), and FIS (82%), guaranteeing effective 

and trustworthy healthcare monitoring in IoT contexts. 

Keywords – Healthcare Monitoring, Deep Learning, Internet of 

Things, Temporal Convolutional Network, Bidirectional Gated 

Recurrent Unit. 

1. INTRODUCTION 

The Internet of Things (IoT) is ecosystem in which each 

connected node may readily communicate with other nodes 

in the network, allowing important data to be sent for precise 

and rapid decision-making [1]. IoT improves many facets of 

human life by combining wearable sensors, wireless 

networks, cellular networks, and gateways. It does this by 

lowering costs, increasing productivity, and supplying useful 

data [2]. Because they provide medical care outside of 

hospital settings, Internet of Things-based applications are 

showing promise as alternatives to traditional health services 

in the healthcare industry. These applications let patients 

preserve their independence while mainly focusing on the 

early diagnosis and prevention of health problems [3]. 

Healthcare services have advanced fast in recent years, 

thanks to the widespread adoption of wearable technology 

that allow doctors and patients to communicate wirelessly.  

This technique, commonly known as telemedicine, has 

changed the way medical treatment is given [4].  Diabetes is 

one of the most common and fastest-growing diseases in the 

world, posing a significant global health challenge.  The 

World Health Organization (WHO) has stressed the need for 

scientific improvements to address this situation [5]. To help 

with these efforts, IoT-based health monitoring systems have 

been created, which use many layers of machine learning 

(ML) models to improve diagnosis and prognosis. These 

systems capture and process vast volumes of data from 

patients' wearable devices, followed by analytical tests that 

enable early identification and evaluation of suspected 

illnesses [6]. 

However, the expansion of sensing technologies through 

the Internet of Things (IoT) platform has allowed the 

development of intelligent objects equipped with processing 

capabilities, localization systems, applications, and other 

devices that can detect and gather data for a number of 

reasons [7].  Despite these developments, the IoT nodes in an 

IoT-enabled healthcare system (HS) remain constantly 

connected via open and insecure public channels, leaving the 

entire network exposed to eavesdropping, data manipulation, 

and other security concerns [8].  Beyond healthcare, IoT has 

found extensive use in a range of industries, including 

economics, military, security, and transportation [8]. 

Collectively, these applications help to realize smart cities, 

ultimately promoting the bigger concept of IoT—a smart 

world in which the universe is regarded as a single 

interconnected organism with autonomous administration 

[9]. 

Data mining is a method for extracting risk indicators 

from unstructured text.  Furthermore, a hybrid model 

combines two separate strategies that function better together 

than any single method [10].   Meanwhile, no optimal IoT 
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and deep learning-based healthcare model for monitoring 

and diagnosing cardiac disease exists [11].  The sensitivity of 

deep learning models to adversarial attacks is a major 

impediment to using them for security applications [12]. IoT 

provides an environment for making information and 

communication secure and private, preventing attackers from 

obtaining the patient's sensitive information [13]. 

The contribution for Healthcare Monitoring in IoT using 

Deep Learning 

•  Proposed a Deep Learning–based TCN-BiGRU 

Healthcare Monitoring framework in IoT that 

integrates wireless sensors, connectivity, cloud 

computing, and user applications for end-to-end 

healthcare monitoring. 

• Introduced a Fuzzy Information System (FIS) in the 

preprocessing stage to effectively handle missing 

values and uncertain medical data, improving data 

reliability. 

• Applied the TCN-BiGRU algorithm for healthcare 

data prediction, enabling accurate classification of 

patients as healthy or diseased using IoT-sensed 

data and medical reports. 

• Demonstrated superior performance with 95% 

accuracy, significantly outperforming existing 

methods such as EHMS (64%), FETCH (86%), and 

FIS (82%). 

• Validated the proposed system using standard 

performance indicators, ensuring dependability and 

reproducibility. 

The structure of the paper as follows:  Section 2 is 

represented as literature Survey.  Section 3 is referred to as 

Proposed Methodology Section 4 is referred to as the Result 

and Discussion, and Section 5 as the Conclusion. 

2. LITERATURE SURVEY 

In 2020, Godi, B., et al [14] proposed IoT-enabled ML 

based E-Healthcare Monitoring Algorithm (EHMS) used for 

automated patient health monitoring, analysis, and decision 

assistance to ensure correct diagnosis. As a result, the 

suggested algorithm is an automated system that continually 

monitors patient health data from wearable devices, 

accurately analyzes it using machine learning, and provides 

reliable decision support for faster diagnosis and enhanced 

healthcare management. However, the suggested algorithm 

is strongly reliant on constant internet connectivity, adequate 

computational resources, and data privacy safeguards, which 

may present issues such as excessive power consumption, 

higher cost, and the possibility of data breaches or 

unauthorized access. 

In 2022, Verma, P., [15] proposed FETCH fog-enabled 

deep learning technique is used for real-time healthcare 

monitoring, combining fog, edge, and cloud resources to 

reduce latency, optimize resource utilization, and increase 

diagnostic accuracy. As a result, the suggested framework 

produces an efficient healthcare monitoring framework that 

achieves lower latency, lower power and bandwidth usage, 

and higher diagnostic accuracy than standard cloud-based 

systems. However, the proposed FETCH fog-enabled deep 

learning method has a high deployment cost, is complicated 

to manage dispersed fog and edge nodes, has possible 

security/privacy problems in multi-layered systems, and 

relies on dependable connectivity for consistent 

performance. 

In 2023, Viswadutt, N. J., [16] proposed pre-trained 

Artificial Neural Network (ANN)-based deep learning 

algorithm is utilized to accurately identify patients’ health 

data from IoT devices in order to discover early warning 

indications and emerging health disorders. The proposed 

algorithm produces an IoT-enabled healthcare monitoring 

system that predicts and detects early health conditions with 

97.81% accuracy, allowing for proactive intervention and 

better patient care. However, the suggested approach has 

high computing needs for training, relies on vast and diverse 

datasets for accuracy, may have latency in real-time analysis, 

is vulnerable to data privacy breaches, and performs poorly 

when faced with noisy or incomplete sensor data. 

In 2023, Khanna, A., [17] proposed IoTDL-HDD model, 

which combines BiLSTM, Artificial Flora Optimization 

(AFO), and a Fuzzy Deep Neural Network (FDNN), is 

utilized for high-accuracy automated categorization of 

biological ECG signals to diagnose cardiovascular disorders. 

The proposed algorithm produces an automated ECG 

classification system that detects cardiovascular illnesses 

with a maximum accuracy of 93.452%, displaying better 

feature extraction and strong diagnostic performance. 

However, the proposed technique has high computational 

complexity, is dependent on large annotated ECG datasets, 

requires longer training time due to optimization, is 

challenging to implement in real-time on resource-

constrained IoT devices, and may degrade performance with 

noisy or imbalanced data. 

In 2024, Rani, P., [18] proposed Bi-LSTM combined 

with a Fuzzy Inference System (FIS) is utilized to accurately 

forecast heart disease from real-time IoT sensor data in smart 

healthcare monitoring.  The suggested technique results in a 

smart IoT-cloud healthcare monitoring system that surpasses 

existing LSTM and FLSTM models, enabling for early 

identification and tailored treatment of cardiovascular 

problems. However, the suggested approach has significant 

computational and storage requirements due to cloud 

dependency, potential latency in real-time processing, 

vulnerability to data privacy and security threats, and is 

unsuitable for implementation on resource-constrained IoT 

devices. 

In 2025, Najim, A, H., [19] proposed Artificial Neural 

Network (ANN)-based intelligent health monitoring 

algorithm that analyzes IoT and WSN sensor data in real time 

to monitor vital indicators for improved patient care, 

particularly in critical and distant instances. The suggested 

approach yielded a real-time IoT-WSN healthcare system 

that reached 96% accuracy, had a low relative error 

compared to commercial medical devices, and performed 

faster than alternative wireless communication methods. 

However, the suggested approach is highly dependent on 

steady 5G connectivity, has considerable computational and 

energy requirements for continuous monitoring, raises 
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possible data privacy and security concerns, and reduces 

accuracy when dealing with noisy or incomplete sensor data. 

In 2023, Paulraj, K., [20] proposed hybrid IoT-Deep 

Learning-XGBoost model is utilized in smart healthcare 

monitoring systems to diagnose patients in real time and with 

high accuracy. The suggested system enables prompt, 

accurate, and robust patient diagnosis by merging IoT-

enabled data collecting, Deep Learning for pattern 

identification, and XGBoost for fast decision-making.  

However, the recommended strategy raises concerns about 

data security and model interpretability, which may limit 

trust and practical applicability in healthcare. 

3. PROPOSED METHODOLOGY 

The suggested healthcare monitoring system is divided 

into four interconnected layers: sensing, networking, cloud, 

and user application.     In the sensing layer, wearable sensors 

with IoT capabilities are utilized to capture real-time 

physiological signals such as EEG, ECG, respiration, pulse 

wave, sweating, eye blinking, and limb movement.   These 

signals are then sent via the connection layer by smart 

devices such as mobile phones, which keep continual touch 

with the clouds.     The cloud layer serves as the core 

processing unit, where obtained data is pre-processed to 

handle noise, ambiguity, and missing values via methods 

such as missing data management and a fuzzy information 

system.   Following pre-processing, the data is routed to the 

prediction module, which employs a hybrid deep learning 

approach based on Temporal Convolutional Networks 

(TCN) and Bidirectional Gated Recurrent Units (BiGRU) to 

forecast time-series data and assess health risks.     Finally, 

the user application layer delivers processed results to 

stakeholders like as patients, physicians, hospitals, and other 

authorized users, enabling real-time monitoring, early 

diagnosis, and informed medical decision-making. This 

layered architecture enables the effective integration of IoT 

sensors, cloud computing, and deep learning to create an 

intelligent and dependable healthcare monitoring system. 

 

Figure 1. Proposed Methodology 

3.1 Sensing Layer 

Wireless body sensors monitor patients' vital signs.  

These patient-connected sensors collect real-time data that is 

seamlessly transmitted to the connection layer using wired or 

wireless communication 

3.2 Connectivity Layer 

The connectivity layer is responsible for connecting the 

data collection layer to the cloud layer.   Because patients 

move frequently and ongoing monitoring is essential, mobile 

devices serve as a convenient and energy-efficient gateway 

for local data collection that consumes little power.    

3.3 Cloud Layer 

The cloud layer is the primary component of the 

proposed system. This layer provides predictions based on 

new patient data using a trained model created through many 

tests.   The technology provides flexibility by combining 

real-time sensor data obtained through the gateway with 

previous patient EMRs stored in the cloud for prediction 

3.3.1 Data Preprocessing 

Since real-world data is inconsistent, fragmented, and 

noisy, data pre-processing is now required for ML algorithm 

deployment.   Missing data processing, normalization are all 

required for efficient disease prediction from the dataset.    
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Signal aberrations may wreak havoc on data collected from 

wearable sensors, reducing prediction accuracy or delivering 

incorrect results.   

3.3.1.1 Handling Missing Data 

The optimum strategy is determined on the type and 

amount of missing data, as well as whether it is missing 

totally at random (MCAR) or at random (MAR). 

3.3.1.2 Fuzzy Information System 

The term fuzzy refers to something that is inexplicable 

or unclear, and the fuzzy system was inspired by the 

necessity to simulate confusing real-world events.  The 

conventional fuzzy system consists of four components: a 

fuzzifier, an inference engine, a knowledge base, and a 

defuzzifier.  A typical fuzzy system may accept both 

numerical and language inputs (fuzzy sets. 

3.3.2 Data Prediction via TCN-BiGRU 

Sequence prediction challenges have been around for a 

while, and they are often regarded as one of the most 

challenging problems in data science to address.  Data 

prediction is done using TCN-BiGRU in Deep Learning 

Algorithm. 

3.3.2.1 Improved TCN Module 

The standard TCN network is enhanced in the following 

ways: the network's residual connection layer is advanced 

and transformed into a pretreatment technique, which 

handles the residual connection before the model is 

constructed.  It eliminates the need to constantly check 

whether the number of channels remains constant throughout 

runtime. The dilated causal convolution operation 𝑇(𝑠) for the 

input of a one-dimensional time series is described as 

follows: 

𝑇(𝑠) = (𝑦 ∗ 𝑑𝑡)(𝑠) = ∑ 𝑓(𝑖)𝑦𝑠−𝑑∙𝑖
𝑘−1
𝑖=0                                        (1) 

 

3.3.2.2 SENet Module 

SENet dynamically learns inter-channel interactions, 

then picks and improves TCN outputs to expand the 

network's representational capacity and capture long-term 

interdependence.   The first step is to create a global 

description vector for each channel by calculating the global 

average of its height and width.   The squeezing method can 

be described as follows:    

   𝑥𝑐 = 𝑇𝑠𝑞 =
1

𝑈×𝐺
∑ ∑ 𝑦𝑖,𝑗,𝑐

𝑈
𝑗=1

𝐺
𝐼=1                                             (2) 

3.3.2.3 BiGRU Module 

GRU is a recursive neural network that uses update gates 

and reset gates as its two main gating methods to control the 

flow of information.   The following is how the GRU is 

represented: 

  𝑒𝑓 = 𝜎(𝑈𝑒 × [𝑦𝑓 , 𝑔𝑓−1] + 𝑆𝑒)                                           (3) 

  𝑥𝑓 = 𝜎(𝑈𝑥 × [𝑦𝑓 , 𝑔𝑓−1] + 𝑆𝑥)                                           (4) 

3.3.2.4 CBAM Module 

The CBAM spatial attention module, which works on 

the spatial dimension of the feature map, assists the model in 

focusing on more discriminative local locations within the 

BiGRU output sequence.   In contrast to SENets approach, 

which focuses solely on channel attention, its spatial 

attention module assigns distinct weights to meteorological 

and pollutant aspects in the same dimension. The CBAM 

architecture can be defined as follows: 

     {
𝑇′ = 𝑁𝑐(𝑇) × 𝑇

𝑇′′ = 𝑁𝑐(𝑇′) × 𝑇′
                                                              (5) 

𝑥𝑦2(𝑇) = 𝜎 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑇)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑇)))   

                                                                                           (6)                  

  𝑥𝑦2(𝑇′) = 𝜎(𝑓8×8([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝑇′);𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑇′)]))        (7)                        

3.4 User Application Layer 

The user application layer is an important component of 

the proposed system, since it effortlessly delivers prediction 

and interpretation results to different users.   Patients, 

clinicians, and hospitals may receive intended results.   

Consumers are notified by SMS and email sent over HTTPs 

4. RESULT AND DISCUSSION 

Experiments were conducted to test the suggested 

system with varied numbers of instances (10% to 100%) on 

generic EHMS, FETCH, FIS, and the proposed technique. 

4.1 Performance Metric  

Accuracy (Acc) refers to the general correctness of a 

classification model.  The ratio of correctly anticipated 

instances to total instances is utilized to calculate it. 

     𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                             (8) 

Recall is the ratio of projected positive observations to actual 

positives, indicating a model's ability to identify all relevant 

cases.  It's also known as sensitivity or true positive rate. 

    𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                    (9) 

Precision measures how accurately the model predicts 

favorable outcomes.  It is the ratio of all expected positive 

observations to the total predicted positive observations. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                               (10) 

The F1-score, often known as the F-measure, is the 

harmonic mean of recall and precision.  It provides a balance 

between recall and precision, especially when the 

distribution of classes is not consistent. 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                              (11) 
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Figure 2. Performance of EHMS, FETCH, FIS and TCN-

BiGRU 

Figure 2 compares the performance of four models—

EHMS, FETCH, Bi-LSTM, and TCN-BiGRU—across four 

assessment indicators.  TCN-BiGRU surpasses these models 

in all categories, with scores close to or above 98%.   This 

displays its ability to correctly identify data while 

maintaining a proper mix of precision and recall.   The 

FETCH model also performs well, placing second in all 

categories with scores of nearly 97%, showing that it is a 

feasible choice.  Bi-LSTM follows closely, particularly in 

recall, indicating that it effectively recognizes affirmative 

examples, albeit it falls slightly behind FETCH in the other 

metrics. EHMS has the lowest performance of the four, with 

metrics ranging from 94% to 95%, showing that it is less 

effective in comparison but still reasonably accurate.  

Overall, the graph shows that TCN-BiGRU is the most 

efficient and balanced model for the specified classification 

task. 

 

Figure 3. Confusion matrix of TCN-BiGRU 

Figure 3 depicts the confusion matrices for both the 

training phase and the testing phase, demonstrating that the 

classification model works consistently and accurately.   In 

each phase, the model correctly classifies 900 cases as 

Normal and 900 instances as Attack, but misclassifies 100 

examples in each category.   This results in an overall 

accuracy of 90%, with precision and recall levels reaching 

90% in the Attack class.   The equal distribution of errors 

demonstrates that the model performs consistently and does 

not favour one class over another. Furthermore, the fact that 

the confusion matrices are the same in both rounds indicates 

that the model generalizes successfully without overfitting 

the training data. Overall, the results show that the model is 

dependable and successful at differentiating between the 

Normal and Attack classes 

 
Figure 4. Roc curve 

Figure 4 shows how a binary classification model 

distinguishes between sick and healthy patients.  This graph 

displays two curves: one for the sick class and one for the 

healthy class.  The AUC measures the model's ability to 

accurately distinguish positive and negative instances.  The 

AUC for the illness class is 0.800, suggesting that the model 

detects disease cases rather well but not outstandingly.  In 

comparison, the healthy class has a higher AUC of 0.930, 

indicating that the model is exceptionally accurate at 

detecting healthy people. 

 

Figure 5 (a). Accuracy curve for training and test 

 

Figure 5 (b). Loss curve for training and test 

Figure 5 (a) displays that both training and validation 

accuracy continuously improve as the number of epochs 

increases, indicating that the model is learning effectively 
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and generalizing successfully, with validation accuracy 

nearly mirroring training accuracy and peaking at roughly 

93% at 700 epochs.   Figure 5(b) illustrates that both training 

and validation losses continuously decrease over time, 

indicating that the model's predictions are becoming more 

accurate.   Although training loss is significantly less than 

validation loss (as is typical of most models), there is no 

significant divergence, indicating minimal overfitting and 

good overall model performance. 

 
Figure 6. Execution Time. 

Figure 6 compares execution durations for several fog 

computing scenarios, such as EHMS, FETCH, Bi-LSTM, 

and TCN-BiGRU.   Execution time is the total time taken by 

each model to complete processing tasks, measured in 

milliseconds (ms).   Among the analyzed algorithms, EHMS 

has the least execution time (2406.0 ms), indicating that it is 

the most cost-effective.   Both FETCH and Bi-LSTM had 

longer execution durations of 3739.5 ms and 3658.9 ms, 

showing average processing efficiency.   Notably, while 

having the lowest latency in the above graph, TCN-BiGRU 

has the longest execution time (5713.5 ms). This shows that, 

while TCN-BiGRU responds quickly to individual inputs 

(low latency), it is computationally more demanding overall.   

In comparison, EHMS, while not the quickest in reaction 

time, is the most efficient in overall processing time. 

 

Figure 7. Latency Time. 

Figure 7 shows the latency performance of four fog 

computing scenarios: EHMS, FETCH, Bi-LSTM, and TCN-

BiGRU.   TCN-BiGRU has the lowest latency, at 12.2 

milliseconds, signifying the quickest reaction time for data 

processing in a fog computing environment. EHMS and Bi-

LSTM follow with latencies of 14.3 ms and 17.53 ms, 

respectively, indicating reasonable performance.  In 

comparison, the FETCH scenario has the largest delay at 

19.82 milliseconds, indicating that it is the least efficient in 

terms of response time.  Overall, the findings show that TCN-

BiGRU is the best technique for latency-sensitive 

applications, making it an excellent choice for real-time and 

time-critical fog computing use cases. 

 

Figure 8. Heart rate for Healthcare Monitoring 

Figure 8 shows the variance in heart rate (BPM) across 

a 60-second monitoring period.   The red curve represents 

heart rate fluctuations caused by natural physiological 

changes and artificial noise, which simulate real-world 

conditions.   Initially, the heart rate rises and stabilizes at 78-

80 BPM before dropping significantly to 70-72 BPM at the 

20-25 second mark.   The heart rate then rises again, reaching 

81 BPM about 40 seconds later, before gradually dropping 

until the end of the observation period. 

 

Figure 9. Blood Pressure for Healthcare Monitoring 

Figure 9 displays the variation in blood pressure over a 

30-minute monitoring period, encompassing both systolic 

and diastolic pressure patterns.   The blue line depicts systolic 

pressure, which first ranges between 118 and 125 mmHg 

before gradually declining to 114-117 mmHg after 20 

minutes, indicating normal physiological changes.   The 

green line represents diastolic pressure, which is normally 

steady in the 75-85 mmHg range with relatively minor 

fluctuations across the monitoring period 

5. CONCLUSION 

The proposed DL-TBH-IoT framework overcomes the 

limitations of existing healthcare monitoring systems by 

combining wireless sensing, IoT connectivity, cloud-based 

preprocessing with FIS, and better prediction using the TCN-

BiGRU algorithm.   The framework enhances the 

dependability and responsiveness of healthcare monitoring 

by offering accurate patient health status classification and 

rapid results transmission to stakeholders.   Experimental 

testing reveals its superiority, with 98.5% accuracy, far 

surpassing previous methods.   Thus, DL-TBH-IoT provides 

a robust, effective, and dependable solution for real-time 
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healthcare monitoring in IoT settings.  Although the 

proposed DL-TBH-IoT framework is highly accurate and 

reliable, there are some areas requiring additional research.   

First, adopting blockchain or federated learning technologies 

in IoT environments may increase data security and patient 

privacy.  Second, expanding the system to include real-time 

streaming analytics would boost the responsiveness of 

critical healthcare applications.   Third, merging multimodal 

data sources including images, audio, and wearable signals 

can boost prediction accuracy.   Finally, large-scale 

implementation and validation in real-world healthcare 

settings are necessary to evaluate scalability, interoperability, 

and clinical efficacy across a wide range of populations. 
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