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Abstract — Healthcare monitoring is the process of assessing an
individual's physical, functional, or cognitive health using a
range of approaches in order to detect changes, manage
symptoms, and avoid serious health issues. Existing
healthcare monitoring systems, on the other hand, face a
number of challenges, including technical issues such as
network connectivity and data security, patient-related barriers
such as device adoption and digital literacy, system integration
issues due to interoperability, and workforce constraints such
as shortages and burnout. To address these issues, a Deep
Learning-based = TCN-BiGRU  Healthcare = Monitoring
Framework for IoT is proposed (DL-TBH-IoT). Wireless
sensors on the sensing layer collect physiological data, which is
then aggregated by the connection layer and sent to the cloud
layer. The cloud layer employs a Fuzzy Information System
(FIS) to handle missing values and uncertainties before
forecasting data with the TCN-BiGRU algorithm, which
classifies patients as healthy or diseased based on medical
information. The projected findings are delivered to patients,
physicians, hospitals, or caretakers through the user application
layer, allowing for fast intervention. The proposed technique is
assessed against industry-standard performance indicators.
The experimental findings show that DL-TBH-IoT achieves
98.5% accuracy, beating other approaches including EHMS
(64%), FETCH (86%), and FIS (82%), guaranteeing effective
and trustworthy healthcare monitoring in IoT contexts.

Keywords — Healthcare Monitoring, Deep Learning, Internet of
Things, Temporal Convolutional Network, Bidirectional Gated
Recurrent Unit.

1. INTRODUCTION

The Internet of Things (IoT) is ecosystem in which each
connected node may readily communicate with other nodes
in the network, allowing important data to be sent for precise
and rapid decision-making [1]. IoT improves many facets of
human life by combining wearable sensors, wireless
networks, cellular networks, and gateways. It does this by
lowering costs, increasing productivity, and supplying useful
data [2]. Because they provide medical care outside of
hospital settings, Internet of Things-based applications are
showing promise as alternatives to traditional health services
in the healthcare industry. These applications let patients
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preserve their independence while mainly focusing on the
early diagnosis and prevention of health problems [3].

Healthcare services have advanced fast in recent years,
thanks to the widespread adoption of wearable technology
that allow doctors and patients to communicate wirelessly.
This technique, commonly known as telemedicine, has
changed the way medical treatment is given [4]. Diabetes is
one of the most common and fastest-growing diseases in the
world, posing a significant global health challenge. The
World Health Organization (WHO) has stressed the need for
scientific improvements to address this situation [5]. To help
with these efforts, [oT-based health monitoring systems have
been created, which use many layers of machine learning
(ML) models to improve diagnosis and prognosis. These
systems capture and process vast volumes of data from
patients' wearable devices, followed by analytical tests that
enable early identification and evaluation of suspected
illnesses [6].

However, the expansion of sensing technologies through
the Internet of Things (IoT) platform has allowed the
development of intelligent objects equipped with processing
capabilities, localization systems, applications, and other
devices that can detect and gather data for a number of
reasons [7]. Despite these developments, the IoT nodes in an
IoT-enabled healthcare system (HS) remain constantly
connected via open and insecure public channels, leaving the
entire network exposed to eavesdropping, data manipulation,
and other security concerns [8]. Beyond healthcare, IoT has
found extensive use in a range of industries, including
economics, military, security, and transportation [8].
Collectively, these applications help to realize smart cities,
ultimately promoting the bigger concept of loT—a smart
world in which the universe is regarded as a single
interconnected organism with autonomous administration

[9].

Data mining is a method for extracting risk indicators
from unstructured text. Furthermore, a hybrid model
combines two separate strategies that function better together
than any single method [10]. Meanwhile, no optimal ToT

©KITS PRESS Publications


mailto:1corresponding.author@mailserver.com

Muthuselvi Rajendran et al. / IJCEO, 03(1), 19-26, 2025

and deep learning-based healthcare model for monitoring
and diagnosing cardiac disease exists [11]. The sensitivity of
deep learning models to adversarial attacks is a major
impediment to using them for security applications [12]. IoT
provides an environment for making information and
communication secure and private, preventing attackers from
obtaining the patient's sensitive information [13].

The contribution for Healthcare Monitoring in IoT using
Deep Learning

e Proposed a Deep Learning—based TCN-BiGRU
Healthcare Monitoring framework in IoT that
integrates wireless sensors, connectivity, cloud
computing, and user applications for end-to-end
healthcare monitoring.

e Introduced a Fuzzy Information System (FIS) in the
preprocessing stage to effectively handle missing
values and uncertain medical data, improving data
reliability.

e Applied the TCN-BiGRU algorithm for healthcare
data prediction, enabling accurate classification of
patients as healthy or diseased using IoT-sensed
data and medical reports.

e Demonstrated superior performance with 95%
accuracy, significantly outperforming existing
methods such as EHMS (64%), FETCH (86%), and
FIS (82%).

e Validated the proposed system using standard
performance indicators, ensuring dependability and
reproducibility.

The structure of the paper as follows: Section 2 is
represented as literature Survey. Section 3 is referred to as
Proposed Methodology Section 4 is referred to as the Result
and Discussion, and Section 5 as the Conclusion.

2. LITERATURE SURVEY

In 2020, Godi, B., et al [14] proposed IoT-enabled ML
based E-Healthcare Monitoring Algorithm (EHMS) used for
automated patient health monitoring, analysis, and decision
assistance to ensure correct diagnosis. As a result, the
suggested algorithm is an automated system that continually
monitors patient health data from wearable devices,
accurately analyzes it using machine learning, and provides
reliable decision support for faster diagnosis and enhanced
healthcare management. However, the suggested algorithm
is strongly reliant on constant internet connectivity, adequate
computational resources, and data privacy safeguards, which
may present issues such as excessive power consumption,
higher cost, and the possibility of data breaches or
unauthorized access.

In 2022, Verma, P., [15] proposed FETCH fog-enabled
deep learning technique is used for real-time healthcare
monitoring, combining fog, edge, and cloud resources to
reduce latency, optimize resource utilization, and increase
diagnostic accuracy. As a result, the suggested framework
produces an efficient healthcare monitoring framework that
achieves lower latency, lower power and bandwidth usage,
and higher diagnostic accuracy than standard cloud-based
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systems. However, the proposed FETCH fog-enabled deep
learning method has a high deployment cost, is complicated
to manage dispersed fog and edge nodes, has possible
security/privacy problems in multi-layered systems, and
relies on dependable connectivity for consistent
performance.

In 2023, Viswadutt, N. J., [16] proposed pre-trained
Artificial Neural Network (ANN)-based deep learning
algorithm is utilized to accurately identify patients’ health
data from IoT devices in order to discover early warning
indications and emerging health disorders. The proposed
algorithm produces an IoT-enabled healthcare monitoring
system that predicts and detects early health conditions with
97.81% accuracy, allowing for proactive intervention and
better patient care. However, the suggested approach has
high computing needs for training, relies on vast and diverse
datasets for accuracy, may have latency in real-time analysis,
is vulnerable to data privacy breaches, and performs poorly
when faced with noisy or incomplete sensor data.

In 2023, Khanna, A., [17] proposed IoTDL-HDD model,
which combines BiLSTM, Artificial Flora Optimization
(AFO), and a Fuzzy Deep Neural Network (FDNN), is
utilized for high-accuracy automated categorization of
biological ECG signals to diagnose cardiovascular disorders.
The proposed algorithm produces an automated ECG
classification system that detects cardiovascular illnesses
with a maximum accuracy of 93.452%, displaying better
feature extraction and strong diagnostic performance.
However, the proposed technique has high computational
complexity, is dependent on large annotated ECG datasets,
requires longer training time due to optimization, is
challenging to implement in real-time on resource-
constrained IoT devices, and may degrade performance with
noisy or imbalanced data.

In 2024, Rani, P., [18] proposed Bi-LSTM combined
with a Fuzzy Inference System (FIS) is utilized to accurately
forecast heart disease from real-time [oT sensor data in smart
healthcare monitoring. The suggested technique results in a
smart [oT-cloud healthcare monitoring system that surpasses
existing LSTM and FLSTM models, enabling for early
identification and tailored treatment of cardiovascular
problems. However, the suggested approach has significant
computational and storage requirements due to cloud
dependency, potential latency in real-time processing,
vulnerability to data privacy and security threats, and is
unsuitable for implementation on resource-constrained IoT
devices.

In 2025, Najim, A, H., [19] proposed Artificial Neural
Network (ANN)-based intelligent health monitoring
algorithm that analyzes IoT and WSN sensor data in real time
to monitor vital indicators for improved patient care,
particularly in critical and distant instances. The suggested
approach yielded a real-time [oT-WSN healthcare system
that reached 96% accuracy, had a low relative error
compared to commercial medical devices, and performed
faster than alternative wireless communication methods.
However, the suggested approach is highly dependent on
steady 5G connectivity, has considerable computational and
energy requirements for continuous monitoring, raises
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possible data privacy and security concerns, and reduces
accuracy when dealing with noisy or incomplete sensor data.

In 2023, Paulraj, K., [20] proposed hybrid loT-Deep
Learning-XGBoost model is utilized in smart healthcare
monitoring systems to diagnose patients in real time and with
high accuracy. The suggested system enables prompt,
accurate, and robust patient diagnosis by merging IoT-
enabled data collecting, Deep Learning for pattern
identification, and XGBoost for fast decision-making.
However, the recommended strategy raises concerns about
data security and model interpretability, which may limit
trust and practical applicability in healthcare.

3. PROPOSED METHODOLOGY

The suggested healthcare monitoring system is divided
into four interconnected layers: sensing, networking, cloud,
and user application. In the sensing layer, wearable sensors
with IoT capabilities are utilized to capture real-time
physiological signals such as EEG, ECG, respiration, pulse
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wave, sweating, eye blinking, and limb movement. These
signals are then sent via the connection layer by smart
devices such as mobile phones, which keep continual touch
with the clouds. The cloud layer serves as the core
processing unit, where obtained data is pre-processed to
handle noise, ambiguity, and missing values via methods
such as missing data management and a fuzzy information
system. Following pre-processing, the data is routed to the
prediction module, which employs a hybrid deep learning
approach based on Temporal Convolutional Networks
(TCN) and Bidirectional Gated Recurrent Units (BiGRU) to
forecast time-series data and assess health risks.  Finally,
the user application layer delivers processed results to
stakeholders like as patients, physicians, hospitals, and other
authorized users, enabling real-time monitoring, early
diagnosis, and informed medical decision-making. This
layered architecture enables the effective integration of loT
sensors, cloud computing, and deep learning to create an
intelligent and dependable healthcare monitoring system.

Cormectivity Layer
-

Figure 1. Proposed Methodology

3.1 Sensing Layer

Wireless body sensors monitor patients' vital signs.
These patient-connected sensors collect real-time data that is
seamlessly transmitted to the connection layer using wired or
wireless communication

3.2 Connectivity Layer

The connectivity layer is responsible for connecting the
data collection layer to the cloud layer. Because patients
move frequently and ongoing monitoring is essential, mobile
devices serve as a convenient and energy-efficient gateway
for local data collection that consumes little power.
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3.3 Cloud Layer

The cloud layer is the primary component of the
proposed system. This layer provides predictions based on
new patient data using a trained model created through many
tests. The technology provides flexibility by combining
real-time sensor data obtained through the gateway with
previous patient EMRs stored in the cloud for prediction

3.3.1 Data Preprocessing

Since real-world data is inconsistent, fragmented, and
noisy, data pre-processing is now required for ML algorithm
deployment. Missing data processing, normalization are all
required for efficient disease prediction from the dataset.
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Signal aberrations may wreak havoc on data collected from
wearable sensors, reducing prediction accuracy or delivering
incorrect results.

3.3.1.1 Handling Missing Data

The optimum strategy is determined on the type and
amount of missing data, as well as whether it is missing
totally at random (MCAR) or at random (MAR).

3.3.1.2  Fuzzy Information System

The term fuzzy refers to something that is inexplicable
or unclear, and the fuzzy system was inspired by the
necessity to simulate confusing real-world events. The
conventional fuzzy system consists of four components: a
fuzzifier, an inference engine, a knowledge base, and a
defuzzifier. A typical fuzzy system may accept both
numerical and language inputs (fuzzy sets.

3.3.2 Data Prediction via TCN-BiGRU

Sequence prediction challenges have been around for a
while, and they are often regarded as one of the most
challenging problems in data science to address. Data
prediction is done using TCN-BiGRU in Deep Learning
Algorithm.

3.3.2.1 Improved TCN Module

The standard TCN network is enhanced in the following
ways: the network's residual connection layer is advanced
and transformed into a pretreatment technique, which
handles the residual connection before the model is
constructed. It eliminates the need to constantly check
whether the number of channels remains constant throughout
runtime. The dilated causal convolution operation T(g) for the
input of a one-dimensional time series is described as
follows:

T = (y xdt)(s) = Zicz_olf(i)ys—d-i (D

3.3.2.2 SENet Module

SENet dynamically learns inter-channel interactions,
then picks and improves TCN outputs to expand the
network's representational capacity and capture long-term
interdependence. The first step is to create a global
description vector for each channel by calculating the global
average of its height and width. The squeezing method can
be described as follows:

P Z;J=1 Vijc

3.3.2.3 BiGRU Module
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GRU is a recursive neural network that uses update gates
and reset gates as its two main gating methods to control the
flow of information. The following is how the GRU is
represented:

e = (U, X [yf' 9f—1] +5,)

xp = 0(Ux X [y, gg-1] + S)
3.3.2.4 CBAM Module

G3)
4)
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The CBAM spatial attention module, which works on
the spatial dimension of the feature map, assists the model in
focusing on more discriminative local locations within the
BiGRU output sequence. In contrast to SENets approach,
which focuses solely on channel attention, its spatial
attention module assigns distinct weights to meteorological
and pollutant aspects in the same dimension. The CBAM
architecture can be defined as follows:

T' = N(T) x T
{T” = N(T) X T" )
x,:(T) =0 (MLP(Angool(T)) + MLP(MaxPool(T)))

(6)

x,2(T") = o(f®*8([AvgPool(T"); MaxPool(T)]))  (7)

3.4 User Application Layer

The user application layer is an important component of
the proposed system, since it effortlessly delivers prediction
and interpretation results to different users. Patients,
clinicians, and hospitals may receive intended results.
Consumers are notified by SMS and email sent over HTTPs

4. RESULT AND DISCUSSION

Experiments were conducted to test the suggested
system with varied numbers of instances (10% to 100%) on
generic EHMS, FETCH, FIS, and the proposed technique.

4.1 Performance Metric

Accuracy (Acc) refers to the general correctness of a
classification model. The ratio of correctly anticipated
instances to total instances is utilized to calculate it.

TP+TN

Acc = ——————
TP+TN+FP+FN

®)
Recall is the ratio of projected positive observations to actual
positives, indicating a model's ability to identify all relevant
cases. It's also known as sensitivity or true positive rate.

TP

Recall = ——
TP+FN

(€))
Precision measures how accurately the model predicts
favorable outcomes. It is the ratio of all expected positive
observations to the total predicted positive observations.

TP

Precision = ——
TP+FP

(10)

The Fl-score, often known as the F-measure, is the
harmonic mean of recall and precision. It provides a balance

between recall and precision, especially when the
distribution of classes is not consistent.
FlScore = 2Xx(PrecisionxRecall) (] ])

Precision+Recall
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Figure 2. Performance of EHMS, FETCH, FIS and TCN-
BiGRU

Figure 2 compares the performance of four models—
EHMS, FETCH, Bi-LSTM, and TCN-BiGRU—across four
assessment indicators. TCN-BiGRU surpasses these models
in all categories, with scores close to or above 98%. This
displays its ability to correctly identify data while
maintaining a proper mix of precision and recall.  The
FETCH model also performs well, placing second in all
categories with scores of nearly 97%, showing that it is a
feasible choice. Bi-LSTM follows closely, particularly in
recall, indicating that it effectively recognizes affirmative
examples, albeit it falls slightly behind FETCH in the other
metrics. EHMS has the lowest performance of the four, with
metrics ranging from 94% to 95%, showing that it is less
effective in comparison but still reasonably accurate.
Overall, the graph shows that TCN-BiGRU is the most
efficient and balanced model for the specified classification
task.
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Figure 3. Confusion matrix of TCN-BiGRU

Figure 3 depicts the confusion matrices for both the
training phase and the testing phase, demonstrating that the
classification model works consistently and accurately. In
each phase, the model correctly classifies 900 cases as
Normal and 900 instances as Attack, but misclassifies 100
examples in each category.  This results in an overall
accuracy of 90%, with precision and recall levels reaching
90% in the Attack class. The equal distribution of errors
demonstrates that the model performs consistently and does
not favour one class over another. Furthermore, the fact that
the confusion matrices are the same in both rounds indicates

that the model generalizes successfully without overfitting
the training data. Overall, the results show that the model is
dependable and successful at differentiating between the
Normal and Attack classes

Receiver Operating Characteristic (ROC) Curves for Disease and Healthy
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Figure 4. Roc curve

Figure 4 shows how a binary classification model
distinguishes between sick and healthy patients. This graph
displays two curves: one for the sick class and one for the
healthy class. The AUC measures the model's ability to
accurately distinguish positive and negative instances. The
AUC for the illness class is 0.800, suggesting that the model
detects disease cases rather well but not outstandingly. In
comparison, the healthy class has a higher AUC of 0.930,
indicating that the model is exceptionally accurate at
detecting healthy people.

Training and Validation Accuracy per Epoch
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Figure 5 (a). Accuracy curve for training and test

Training and Validation Loss per Epoch

— Training Loss
0.65 Validation Loss.

Loss Per Epoch
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Figure 5 (b). Loss curve for training and test

Figure 5 (a) displays that both training and validation
accuracy continuously improve as the number of epochs
increases, indicating that the model is learning effectively
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and generalizing successfully, with validation accuracy
nearly mirroring training accuracy and peaking at roughly
93% at 700 epochs. Figure 5(b) illustrates that both training
and validation losses continuously decrease over time,
indicating that the model's predictions are becoming more
accurate. Although training loss is significantly less than
validation loss (as is typical of most models), there is no
significant divergence, indicating minimal overfitting and
good overall model performance.

Execution Time for Different Fog Computing Scenarios
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Figure 6. Execution Time.
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Figure 6 compares execution durations for several fog
computing scenarios, such as EHMS, FETCH, Bi-LSTM,
and TCN-BiGRU. Execution time is the total time taken by
each model to complete processing tasks, measured in
milliseconds (ms). Among the analyzed algorithms, EHMS
has the least execution time (2406.0 ms), indicating that it is
the most cost-effective. Both FETCH and Bi-LSTM had
longer execution durations of 3739.5 ms and 3658.9 ms,
showing average processing efficiency.  Notably, while
having the lowest latency in the above graph, TCN-BiGRU
has the longest execution time (5713.5 ms). This shows that,
while TCN-BiGRU responds quickly to individual inputs
(low latency), it is computationally more demanding overall.
In comparison, EHMS, while not the quickest in reaction
time, is the most efficient in overall processing time.

Latency for Different Fog Computing Scenarios
193
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Figure 7. Latency Time.

Figure 7 shows the latency performance of four fog
computing scenarios: EHMS, FETCH, Bi-LSTM, and TCN-
BiGRU. TCN-BiGRU has the lowest latency, at 12.2
milliseconds, signifying the quickest reaction time for data
processing in a fog computing environment. EHMS and Bi-
LSTM follow with latencies of 14.3 ms and 17.53 ms,
respectively, indicating reasonable performance. In
comparison, the FETCH scenario has the largest delay at
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19.82 milliseconds, indicating that it is the least efficient in
terms of response time. Overall, the findings show that TCN-
BiGRU is the best technique for latency-sensitive
applications, making it an excellent choice for real-time and
time-critical fog computing use cases.

Heart Rate Monitoring (Healthcare)
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Figure 8. Heart rate for Healthcare Monitoring

Figure 8 shows the variance in heart rate (BPM) across
a 60-second monitoring period. The red curve represents
heart rate fluctuations caused by natural physiological
changes and artificial noise, which simulate real-world
conditions. Initially, the heart rate rises and stabilizes at 78-
80 BPM before dropping significantly to 70-72 BPM at the
20-25 second mark. The heart rate then rises again, reaching
81 BPM about 40 seconds later, before gradually dropping
until the end of the observation period.

Blood Pressure Monitoring (Healthcare)
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Figure 9. Blood Pressure for Healthcare Monitoring

Figure 9 displays the variation in blood pressure over a
30-minute monitoring period, encompassing both systolic
and diastolic pressure patterns. The blue line depicts systolic
pressure, which first ranges between 118 and 125 mmHg
before gradually declining to 114-117 mmHg after 20
minutes, indicating normal physiological changes. The
green line represents diastolic pressure, which is normally
steady in the 75-85 mmHg range with relatively minor
fluctuations across the monitoring period

5. CONCLUSION

The proposed DL-TBH-IoT framework overcomes the
limitations of existing healthcare monitoring systems by
combining wireless sensing, loT connectivity, cloud-based
preprocessing with FIS, and better prediction using the TCN-
BiGRU algorithm. The framework enhances the
dependability and responsiveness of healthcare monitoring
by offering accurate patient health status classification and
rapid results transmission to stakeholders. Experimental
testing reveals its superiority, with 98.5% accuracy, far
surpassing previous methods. Thus, DL-TBH-IoT provides
a robust, effective, and dependable solution for real-time
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healthcare monitoring in IoT settings.  Although the
proposed DL-TBH-IoT framework is highly accurate and
reliable, there are some areas requiring additional research.
First, adopting blockchain or federated learning technologies
in IoT environments may increase data security and patient
privacy. Second, expanding the system to include real-time
streaming analytics would boost the responsiveness of
critical healthcare applications. Third, merging multimodal
data sources including images, audio, and wearable signals
can boost prediction accuracy. Finally, large-scale
implementation and validation in real-world healthcare
settings are necessary to evaluate scalability, interoperability,
and clinical efficacy across a wide range of populations.
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