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Abstract — Internet of Things (IoT) is a new paradigm that
integrates physical items from a variety of domains, such as
human health, industrial processes, environmental monitoring
and home automation with the Internet. In addition to many
advantages, It creates security issues and expands the number
of gadgets we use on a daily basis. The proposed deep learning-
based intrusion detection methods test against a range of threats
to determine their efficacy and offer suggestions for how well
they perform in IoT intrusion detection. However, it is difficult
to apply traditional Intrusion Detection system techniques to
the Internet of Things due to its unique characteristics,
including devices, specific protocol stacks, standards and
limited resources. A new variational Autoencoder based Deep
learning framework for Intrusion Detection (AUTODEEP-ID)
has been proposed to address this problem and detect attacks in
an Internet of Things environment. The suggested approach
makes use of a BIGRU to categorize data into attacks and a
Variational Autoencoder to extract pertinent features. The
efficiency of the suggested approach is evaluated by recall,
precision and accuracy. The observational findings shows that
the AUTODEEP-ID detects DDOS and U2R as 0.3% and 0.2 %
respectively.

Keywords — Internet of Things, Intrusion Detection System, deep
learning, network security, DDoS attack, U2R attack.

1. INTRODUCTION

The Internet-of-things (IoT) links various physical
devices through the Internet and has a wide range of
applications, including in the transportation, agriculture,
military, and healthcare Increasing automation and providing
timely insights and supporting informed decision-making
through data analysis are core goals of IoT by making it
possible for devices and systems to communicate with one
another without requiring human intervention. However, the
use of transmission and communication protocols in IoT
devices raises serious security issues.

Understanding traffic patterns and spotting possible
threats are essential for maintaining strong network security
in the Internet of Things (IoT). Consequently, intrusion
detection systems (IDSs) are now necessary to guarantee
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optimal network performance. These systems are made to
identify and react to security risks that affect infrastructure,
computer networks, systems, and other online spaces.
Intrusion detection and prevention systems reduce risks and
improve overall security by automatically recognizing and
controlling threat events.

To identify trends in network traffic and identify
possible threats, a variety of deep learning (DL) techniques
are used. In this procedure, features are extracted from input
datasets using a CNN-based method, and the most pertinent
features are chosen using TSODE. However, there are issues
with the system, such as a high rate of false positives and
trouble adjusting to attacks that haven't been discovered yet.

In order to address this problem, AUTODEEP-ID, a
system that makes use of the most recent developments in
deep learning (DL). It applies a bidirectional gated recurrent
unit (BIGRU) to identify and categorize possible attacks and
uses a variational autoencoder to extract features from input
datasets. The system is designed to detect intrusion attempts
by analyzing incoming network data. The following are this
work's main contributions:

e  This study's primary goal is to create a practical
strategy for guaranteeing network security in an
Internet of Things (IoT).

e Provide a successful IDS plan that utilizes the
advantages of deep learning to accurately classify
and detect attacks in an IOT environment.

e A specially created variational autoencoder was
used to extract pertinent features from the input
data.

e  The suggested BiGRU model is used to generate
alerts and classify intrusions.

The rest of this paper is structured as follows: A
thorough literature review is provided in Section II. The deep
learning-based intrusion detection methodology is described
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in Section III. The experimental findings and important
observations are covered in Section IV. The study is finally
concluded and future research directions are outlined in
Section V.

2. LITERATURE REVIEW

In 2024 Afridi et al[14] suggested a novel distributed
hybrid intrusion detection technique for the Internet of
Vehicles (IoV) that is based on deep learning. To efficiently
detect network intrusions, their model combines a
convolutional neural network (CNN) with an enhanced long
short-term memory (LSTM) network. According to
experimental results, the algorithm has a strong detection
performance, a 99.7% accuracy rate, and a rapid detection
rate, reaching its target in as few as 20 iterations.

In 2023 Bhavsar et al [15] suggested an intrusion
detection system (IDS) was proposed using the Pearson
Correlation Coefficient—-Convolutional Neural Network
(PCC-CNN) deep learning model. The system performs
binary classification to identify abnormal behaviour. With
misclassification rates of 0.02, 0.02, and 0.01, the integrated
model shows strong potential for accurate intrusion detection
to detect anomalies in network traffic

In 2024 Hazman et al [16] suggested IDS-SIODL is a
new intrusion detection system (IDS) for [oT-enabled smart
cities that combines a long short-term memory (LSTM)
model with feature engineering. With a recording accuracy
of roughly 0.9990 and processing times of about 600 ms for
training and 6 ms for classification, the system exhibits good
performance. The model's efficacy in identifying intrusions
is demonstrated by evaluation metrics like accuracy, recall,
and precision.

In 2023 Chen et al[17] suggested a 1G-Chi, a hybrid
feature selection model, was created To improve
classification accuracy and decrease feature dimensionality.
To find the most pertinent features, this method combines
information gain with the chi-square test. According to
experimental results, the DF model uses less than 10% of
CPU resources, while other models use more than 15%.
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Nevertheless, increased computational -efficiency (CE)
comes at the expense of decreased security performance
robustness.

In 2023 Gaber et al [18], an Industrial Internet of Things
(IToT) framework was put forth suggested to do away with
the need to link Industrial Automation and Control Systems
(IACS) to traditional ICT platforms. The Random Forest
(RF) and Binary Analysis (BA) classifiers performed better
than other recent state-of-the-art machine learning and multi-
objective algorithms, according to experimental results.
However, the system's complexity makes real-time
implementation difficult.

In 2023 Shahriar et al [19] suggested CAN Shield is a
signal-level intrusion detection framework for the CAN bus
that is based on deep learning. Compared to the traditional
mean average method, the overall AUROC is 6.40% higher
in this result. It does, however, demand more processing
power.

In 2024, Almutairi et al [20] suggested an Intrusion
Detection Method Based on Ensemble Deep Learning and
Quantum Dwarf Mongoose Optimization in the CPS
Environment. By using feature selection, the QDMO-EDLID
technique detects the existence of intrusions. The results
demonstrate improved performance with a 99.51%
maximum accuracy.

3. PROPOSED METHODOLOGY

In this section a novel AUTODEEP-ID has been
suggested for IOT attack detection. IOT devices are the
source of the data in this case. Following collection, the data
was preprocessed using methods like data cleansing and
normalization. BI-GRU is used for classification, and
variational auto encoders are used for feature extraction to
extract pertinent data. in order to identify IOT attacks. This
method is used in the Internet of Things (IoT) context to
better balance exploration and exploitation, allowing for the
selection of an ideal subset of features to increase the
precision of intrusion detection predictions. Fig. 1 displays
the workflow for the AUTODEEP-ID in network security
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Figure 1. Framework of the AUTODEEP-ID in network security
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3.1 Data Collection

10T devices that have sensors installed are the source of
data collection. The fundamental representation of IoT traffic
data is used as input in this section.

3.2 Preprocessing

The raw data obtained from sensors is prepared for
analysis during preprocessing. Data normalization and data
cleansing are two preprocessing techniques.

3.2.1 Data cleansing

The process of starting with raw data from one or more
sources and preserving its dependability is known as data
cleansing

3.2.2 Data normalization

A crucial preprocessing step in getting data ready for
artificial neural network training is data normalization. It
shortens the total training time and aids in accelerating model
convergence. Data can be standardized using a variety of
methods, including min-max scaling, mean normalization,
and standard scaling

XI — X-min(X)
max(X)-min(X)

(1)
3.3 Feature Extraction

As potent deep generative models that can capture
complex, high-dimensional data in an unsupervised, low-
dimensional latent space, variational autoencoders (VAEs)
are used for feature extraction. Autoencoders (AEs), which
are trained to reconstruct their input data, serve as the
foundation for VAEs. Nevertheless, new samples cannot be
produced by conventional autoencoders. In order to
overcome this restriction, VAEs impose a variational
constraint by requiring that the latent variable z have a
normal distribution. In order to generate new data points and
improve the model's generative capabilities, the decoder then
takes samples from this distribution.

M@y, y)= x| 2
log pe(y)= YT, log pe(y") A3)
log pe(y") , _ =
DF(w(x|y®, 9),Z(x|y®, 9)) +M(8, 8; y") “

where the distance between two distributions is

determined using the DF divergence function.
M(8,8;y®) DF(w(x|y™, #),v(y,
0)+Ryy i@ o[10g (x Pz, 0)] 6)

The KL function's non-negativity allows equation (3) to
be rewritten as:

log pe(y") = - DF(w(x|y™, ®),v(y,
Ry (nm g[L0g (x Pz, 0)] (6)
zZ=u+os @)

where the mean and latent variable are indicated by p
and 0.
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Equation (7) uses the jth jth sample F(n) F(n), which is
taken from a standard normal distribution and corresponds to
the ith ith data instance, to compute w(m,n) w (m,n). The
datasets are then subjected to variational autoencoders in
order to extract significant features

3.4 Classification

BiGRU, a simplified version of the long short-term
memory (LSTM) network, is used for classification. With
fewer training iterations, fewer parameters, and a more
straightforward gating mechanism that lessens the chance of
overfitting, GRU provides performance that is on par with or
better than LSTM. This enables GRU to simplify the network
architecture while preserving the efficacy of LSTM. These
benefits have led to the widespread adoption of GRU. The
update gate and the reset gate, which control the retention
and deletion of data throughout the learning process, are its
two primary components.

F=o(Tr[Ry — 1Yn]) ©9)
Se=0(Ts[Rn —1,Y,]) (10)
M,,=tanm(T,,,[S,© M,-1,Y,]) (11)
M,=(1-F,)OM,-1+F,0 M, (12)
H=L:1L (13)

where \vec{L} represents the forward gated recurrent
unit state and L represents the backward gated recurrent unit
state. Lastly, the BIGRU model accurately and with a low
error rate divides the data into DDOS, U2R, and normal.

4. RESULT AND DISCUSSION

A computer running an Intel CoreTM i5-8250U CPU at
1.8 GHz, 12 GB of RAM, and 64-bit Windows 10
Professional was used for the experiments. Python 3 was
used to implement the suggested models

4.1 Dataset Description

The 1998 DARPA Intrusion Detection Evaluation
Program, carried out by MIT Lincoln Laboratory, provided
the dataset used in this investigation. Network traffic data
from about 100 users on 1,000 UNIX-based systems was
collected over a 10-week period. The KDDCup 1999 dataset
was produced by processing this data after it was recorded
using the tcpdump format. The KDDCup-99 dataset
classifies attacks into five primary categories and comprises
41 features. These features fall into three categories: time-
based traffic features calculated with a 2-second sliding
window, content features that contain comprehensive
TCP/IP payload information, and basic features taken from
packet capture (Pcap) files

4.2 Performance Metrics

This section explains the measures that were used to
evaluate the AUTODEEP-ID. The effectiveness of the



Mudassir Khan et al. / IJCEO, 03(1), 14-19, 2025

recommended strategy has been evaluated using the Recall, Recall = TP/ (TP + FN)
F1-Score, Accuracy and Precision measures.
4 _ TP+TN
CeUracy = o T TNTFP 4.3 Performance Analysis
=_T° According to the experimental results, the proposed
TP+EP technique has been compared with current techniques for
F1 — score = 2 (FR-Recal) detecting attacks.
(PR+Recall)
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Figure 2. Accuracy vs Loss
The accuracy and loss values of the KDDCup99 dataset For classification tasks, Figure 4 shows confusion

at various iteration stages are shown in Figure 2. The graph matrices with performance predicted labels on DDOS, UR2,

illustrates how accuracy and loss change with the number of =~ and Normal 98.45% of labels are identified, with 1.08%

training iterations for the BiGRU-based intrusion detection  being classified as normal and 1.20% as somewhat elevated.

model The classifier performs well across all datasets, especially
when it comes to detection
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Figure 3. Roc Analysis dataset

The ROC of intrusion detection outcomes using the Figure 5. Performance analysis
BIGRU is shown in Figure 3. In comparison to the dataset,
parameters produced a comparatively high AUC of 0.99 for The performance study of categorization classes using
DDOS 0.9821 for U2R and 0.9789 for normal. the KDDcup99 dataset is shown in Figure 5. the

recommended method accuracy, recall, and specificity are
98.01, 98.21, 97.89 respectively.
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Figure 6 shows how the model can identify and
categorize DDoS, U2R, and normal network traffic types
under varied circumstances. Each bar's height represents the
average detection performance, and error bars show
variations between test runs or conditions

5. CONCLUSION

This study suggests a AUTODEEP-ID methodology to
classify and detect attacks in IOT environment. To
effectively capture features and raise the accuracy of the
classification model, the variational autoencoder is used for
feature extraction. The network is able to categorize attacks
into DDOS and U2R Normal by feeding these extracted
features into the BIGRU model. f1 score, recall, precision,
and accuracy are used to assess the suggested approach. The
suggested attack classes for the dataset are DDOS, U2R, and
Normal, which are 98.01, 98.21, and 97.89, respectively. Our
suggested methodology has a higher accuracy rate. The
system can be enhanced by combining it with artificial
intelligence to produce an intelligent system that can identify
attacks by analyzing data patterns from system device
readings.
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