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Abstract — Cloud computing is a fundamental paradigm for
computing services based on the elasticity attribute, in which
available resources are effectively adjusted for changing
workloads over time. One of the most important challenges in
such systems is the task scheduling problem, which aims to
identify the optimal resource allocation to maximize
performance and minimize response times. To get around these
restrictions, the new Dynamic BIRCH based BIGRU model for
time series prediction (DynaBit) technique is suggested for
future server load prediction. Predicting time series, collecting
workloads, preprocessing and clustering them, and post-
processing the data are all steps in the suggested approach. The
workload data will be divided according to a historical time
window during the preprocessing phase. The time series data
will then be clustered based on the latency classes using the
Dynamic Birch algorithm. The original data is recovered
through postprocessing, and the Bidirectional Gated Recurrent
Unit (BIGRU) is employed in the time series prediction phase.
The proposed model has been compared with previous
approaches involving Parallel Algorithm, HEFT and FCFS
approaches in terms of prediction accuracy by 31.9%, 18.74%,
and 12.16%, respectively.

Keywords — Workload prediction, server, Gated Recurrent Unit,
Dynamic birch.

1. INTRODUCTION

Cloud computing works on a pay for each use system
where clients access the cloud services without having full
knowledge of the distribution policies and hosting specifics
.This reduces the amount of time needed to shop for
businesses and ascertain the logical conclusions by offering
worldwide on-request access to a shared pool of resources,
including storage space, computer servers, and web
facilities.[1-3] Customers don't have to contact the facility
provider and can access these resources consistently without
stress. The goal of cloud infrastructure is to give dynamic
applications a user-friendly workspace [4, 5].
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A cloud permits workloads to be easily installed and
scaled owing to the fast provisioning of a virtual or physical
machine. Multiple virtual machines (VMs) can share
physical resources (CPU, memory, and bandwidth) on a
single physical host in a cloud computing environment.[6]
Additionally, network virtualization allows multiple VMs to
share a data center's bandwidth. Since there are typically a lot
of user requests, a significant challenge is to efficiently
schedule user requests with minimal turnaround time for
tasks related to user demands, ensuring optimal system
performance [7, 8].

The work load problem is formulated using a queuing
model with the objective of minimizing the overall waiting
time for each task. Task priorities are assigned according to
size for effective handling, and a waiting time matrix is
introduced to support the scheduling framework [9, 10]. The
waiting queue is optimized using a Fibonacci heap, and a
parallel algorithm is suggested for both preemptive and non-
preemptive scheduling, enhancing responsiveness However,
integrating several different parts, like the Fibonacci heap,
parallel scheduling logic, and priority assignment algorithm,
adds a lot of computational overhead and makes
implementation challenging [11, 12]. This can limit the
system's scalability or real-time applicability in
environments with limited resources or high levels of
dynamicity. To overcome this issue a novel based approach
has been proposed to efficiently schedule user requests with
minimal turnaround time for tasks related to user demands,
ensuring optimal system performance [13]. The key
contributions of the developed LATS approach have been
provided in the following manner.

e In the preprocessing stage, the workload data with
timestamp is sliced by a history time window and
given to the Dynamic Birch which efficiently
clusters the workload with similar characteristics.
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e Dynamic time wrapping has been applied to
dynamic birch, for refining the detection of cluster
centers and reducing the influence of outliers.

e  The clustered output will be fine-tuned and given to
the Bidirectional Gated Recurrent Unit, which
predicts the time series data that enhances the long-
term dependency and maintains the efficiency.

e An evaluation of the accuracy of future workload
predictions was conducted based on actual requests
to web servers, and the silhouette score was utilized
as the metric for assessing cluster performance.

The rest of the paper is organized in the following
manner. The literature review is explained in Section II. The
developed DYNABIT is extensively given in Section III. The
Experimental Results section is covered in Section IV. The
conclusion and future work are discussed in Section V.

2. LITERATURE REVIEW

In 2023 Gad et al. [14] introduces an opposition based
simulated annealing particle swarm optimizer (OSAPSO) to
address PSO’s premature convergence issue. The results
reveal that OSAPSO beats its peers in IIOT task scheduling
of cloud systems. However, Combining POBL, SA-inspired
crossover, and greedy OES strategies makes OSAPSO
algorithmically complex.

In 2024 Ahmed et al. [15] suggested datasets to compare
scheduling algorithms, including Shortest Job First, First
Come, First Served, (DVFS) and Energy Management
Algorithms (EMA). The experimental findings indicate that
increasing the number of virtual machines reduces
Makespan. However, improved HEFT algorithms
outperform the standard HEFT algorithm in terms of shorter
schedule lengths for running on several virtual machines are
workflow issues.

In 2024 Devi et al. [16] suggested This paper aims to
introduce an optimal hybrid metaheuristic algorithm by
leveraging the strengths of both the Artificial Gorilla Troops
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Optimizer (GTO) and the Honey Badger Algorithm (HBA)
to find an approximate scheduling solution for the BoTS
problem. The result shows GTOHBA achieved 8.46-30.97%
makespan reduction and 8.51-33.41% energy consumption
reduction against the tested metaheuristics.

In 2023 Lipsa et al. [17] suggested a parallel algorithm
for task scheduling in which the priority assignment to task
and building of heap is executed in parallel with respect to
the non-preemptive and preemptive nature of tasks. The
results proves that our proposed algorithms perform better in
terms of optimizing the overall waiting time as well as the
CPU time consumed.

In 2023 Hai et al. [18] suggested different HEFT
algorithm versions altered to produce improved results. The
result shows that the altered versions of the HEFT algorithm
have a better performance than the basic HEFT algorithm
regarding decreased schedule length of the workflow
problems. However, an optimization problem related to this
is the maximal determination of cloud computing scheduling
criteria.

In 2023 Yadav et al. [19] suggested an improved &
enhanced ordinal optimization technique to reduce the large
search space for optimal scheduling in the minimum time to
achieve the goal of minimum makespan. This proposed
ordinal optimization technique and linear regression generate
optimal schedules that help achieve minimum makespan.

In 2023 Banerjee et al. [20] suggested a novel method
for job scheduling in cloud computing. However, algorithm
demonstrated significant improvements in makespan
reduction and resource utilization compared to existing
scheduling algorithms, the comparison was limited to a
specific set of algorithms. The results show proposed
DynaBit algorithm outperforms the other considered
scheduling algorithms across various evaluation metrics.

3. PROPOSED METHODOLOGY
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Figure 1. DynaBit technique
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In this section, a novel Dynamic BIRCH based BIGRU
model for time series prediction (DynaBit) algorithm has
been proposed to predict future server loads. Workload
collection, data preprocessing, time series forecasting using
bidirectional gated recurrent units (BIGRU), and data
postprocessing are all included in the suggested method. The
overall block diagram for the developed methodology is
given in Fig 1.

A structured forecasting approach needs to be
introduced in workload forecasting because the cloud
workloads exhibit complex temporal dependencies across
multiple resource metrics such as CPU, memory, etc. To
accurately predict future workloads, we model these
dependencies using multivariate time series.

3.1. Preprocessing stage

The preprocessing stage has been divided into two steps.
Initially, based on the history time window, data slicing is
performed, and then the time series will be clustered.

3.2. Workload collection and data slicing

For efficient resource allocation, the DynaBit model
forecasts cloud workload using workload time series data,
which is collected at minute-level intervals. Because users
often access the same data, workloads often exhibit recurring
patterns. In order to ensure trace stability and enable
effective feature mining and tuning, this study treats
workload prediction as a multivariate time series problem
and employs normalization techniques.

3.3. Dynamic Birch

In BIRCH, a cluster is defined by its Cluster Features
(CFs), and the hierarchical structure of clusters is displayed
using a CF tree. To find the cluster centroid, represented by
{XT} in BIRCH clustering, where i = 1,2, ..., N, Equation
(1) applied consecutively.

—  yNg
X, =52 (1)

By choosing the number of clusters, the processed data
is separated into discrete subgroups according to specific
CFs. Cluster tags are then applied to these subsets to cluster
them in an energy-constrained manner.

3.3.1. Dynamic time warping (DTW) metric

DTW is selected as the distance function because storage
analysis helps in detecting future workload demands. A
technique employed in time series analysis to compare two
temporal sequences that don’t exactly match in length,
velocity, or time is Dynamic Time Warping (DTW). DTW
can collect temporal features with varying timing shifts.
DTW modifies the correspondence between two sequences
by dynamic programming concepts to detect the best path
that reduces the distance between the two sequences along
the path.

.. . .. \2
D(L']) = mn!n \[Z(x,y)en' d(lx']y) (2)
Where, T = [y, ... T,] is a path, and d(ix,jy) is the distance.

3.3.2 Cluster fine-tuning

Initial clustering often results in poorly separated
groups, fine-tuning is necessary. The framework enhances
clustering by combining clusters with trend similarity above
a threshold (t1), re-clustering when the proportion of outliers
falls between Pmin and Pmax, classifying all dates as outliers
if their proportion exceeds a maximum threshold (Pmax),
keeping initial clusters if outliers are below a minimum
threshold (Pmin), and moving dates with low similarity to an
"outlier" cluster (t2).

3.4. BIGRU For Workload prediction

After preprocessing, the time series are passed to the
Bidirectional Gated Recurrent Unit a gated recurrent unit,
which is a simplified version of LSTM (Long short-term
memory). Compared with LSTM, Bidirectional Gated
Recurrent Unit simplifies the gating unit reduces the network
parameters and is less likely to produce overfitting, and
Bidirectional Gated Recurrent Unit achieves better results
with the same number of iterations, so Bidirectional Gated
Recurrent Unit can make the network structure simpler while
maintaining the LSTM effect. At present, Bidirectional
Gated Recurrent Unit has been widely used. Bidirectional
Gated Recurrent Unit includes an update gate and a reset
gate, which determine the retention and discarding of
information respectively.

Fo=0(T¢[Ry, — 1.Y,]) 3)

Se=0(Ts[Ry —1,Y,]) “)
M, =tanm(Tyn [S,© My-1,Y,]) ®)
M,=(1-F,)OM,-1+F,0 M, (6)

Where F, is the update gate at time step t; S; is the reset
gate at time step t; M,, is the state of the hidden layer unit at
time step t; M,, is also used as the input for the next time step;
Y, is the input at the current time step t; M, -1 is the state of
the hidden layer unit at the previous moment.

H=L: L (7

Where L is the state of gated recurrent unit for forward

and L is the state of gated recurrent unit for backward. Finaly
BIGRU model predicts workload

4. RESULT AND DISCUSSIONS

To assess LATS, simulation tests were performed and its
performance was compared to that of the current approaches
covered in Section II. Google's public workload traces, which
included over 46 million activities from a variety of CPU-
and memory-intensive tasks, were used in the study. The
dataset, which was gathered from more than 12,500
computers, contains parameters like parent ID, time, CPU
workload, job ID, number of cores, and RAM.

4.1 Clustering Results

Clusters are manually labeled according to their mean
values, emphasizing the allocation and use of resources.
Average memory usage remains below 50% and CPU
utilization hovers around 60%, even though over 80% of the
system is allocated. With CPU and memory labels connected
to branches at the same clustering level, labels have a
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hierarchical structure. The memory/core ratio of clusters with
the label "CPU" may still be higher than that of clusters with
the label "Mem."

4.2 Performance Metrics

For assessing the efficacy of the developed DYNABIT
approach, we computed mean absolute percentage error
(MAPE), mean absolute error (MAE), and root mean square
error (RMSE). There were two separate evaluation criteria
applied. The output is designated as X, while the ground truth
is recorded as x.

Clustering Without Fine-Tuning

RMSE = \/i (CaXa = %)) (8)
MAE = = (ZalXq = %) ©)
MAPE =2 (3, %) (10)

The suggested LATS model is evaluated by contrasting
it with three current methods: FCFS, Heft and Parallel
Algorithm. These represent a variety of methods and were
chosen for their efficacy in workload prediction. Other
approaches were disregarded because of their limited
applicability and varying scopes.

Clustering With Fine-Tuning
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Figure 2. Clustering results (a) Clustering without fine-tuning (b) with fine-tuning

Fig 2 shows Workload clustering results Fig2(a) three
overlapping clusters are produced without fine-tuning, and
(b) four well-separated clusters are produced with fine-
tuning. Workload differentiation and clustering accuracy are
enhanced by fine-tuning.
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The prediction accuracy of the suggested LATS method,
Parallel Algorithm, HEFT and FCFS is displayed in Figure
3. Because DYNABIT takes latency classes into account, it
performs 31.9% better than the others, 18.74% better, and
12.16% better, respectively. Earlier approaches, on the other
hand, relied on deep learning without latency awareness,
which led to decreased accuracy.
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Figure 4. Comparison of performance metrics

Figure 4 compares error metrics (RMSE, MAE,
RMSSE) across techniques. The proposed LATS method
shows the lowest error rates due to latency-aware clustering
and dynamic birch, which enhance BIGRU forecasting
accuracy.
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Figure 6. Average Accuracy of CPU Prediction

The suggested DYNABIT model achieves higher
memory and CPU prediction accuracy across all latency
classes, as seen in Figures 5 and 6. Better generalization is
made possible by DTW-based clustering of related
workloads. The lack of clustering in current approaches, on
the other hand, results in increased errors for dynamic
workloads.

5. CONCLUSION

This study suggests a Dynamic BIRCH based BIGRU
model for Time series prediction (DynaBit) algorithm to
predict future server loads. The developed model has been
assessed utilizing real-world workload traces. When
workload prediction is considered a translation problem,
additional translation methods may be available. The
proposed DynaBit technique is optimized for short-term
predictions (one-step forecasting), which may reduce the
capability of predicting long-term workloads. The numerical
evaluation demonstrated that DynaBit outperformed three
existing time  series prediction techniques, Parallel
Algorithm, HEFT and FCES, in terms of RMSE, MAE, and
MAPE. The prediction method improves significantly from
the workload classification based on latency sensitivity,
which is included in the proposed approach. For less latency-
sensitive workloads, the proposed model outperforms
Parallel Algorithm, HEFT, and FCFS approaches in terms of
prediction accuracy by 31.9%, 18.74%, and 12.16%. In
future work, Validating the proposed model in a real-time
environment for evaluating its practical application.
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