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Abstract — Proximal humeral fractures are common injuries,
especially in youngsters and the elderly, and usually correspond
to 5-6% of all fractures. There has been a general increase in
upper extremity fractures in children. Detecting PHF is the
time-consuming process of manual diagnosis by professionals
using X-ray images. In this paper, a novel deep learning-based
BON-VNET model is proposed for the detection of fracture in
bones. Initially, the input CT image is pre-processed utilizing
adaptive bilateral filter. Then, the pre-processed images are
segmented using V-Net segmentation model. Afterward the
segmented images are fed as an input the HOG based feature
extraction phase for extracting the relevant features. Finally,
the machine learning (ML) based ANFIS approach is employed
for the classification of PHF images. From the trail result, the
proposed BON-VNET model achieves 99.77% of accuracy rate,
which is more than that of the conventional DL networks.
Proposed BON-VNET model exhibits an overall accuracy
improvement of 13.83%, 8.82%, and 16.95% compared to
InceptionV3 Near classification and SVM, respectively.

Keywords — adaptive bilateral filter, V-Net, Deep learning,
Machine Learning.

1. INTRODUCTION

Proximal humerus fractures are recognized as
quintessential osteoporotic injuries, commonly afflict the
elderly populace. These fractures encompass damage to
various regions of the PH, including the greater tuberosity
(GT), lower tuberosity, anatomical neck, or surgical neck [1-
2]. The proximal humerus, situated in the upper extremity,
serves as a crucial component of the upper arm bone [3].
However, managing these fractures presents a challenge,
attributable to factors such as inconsistent classification
systems, lack of consensus regarding surgical indications,
and the potential for difficult-to-treat complications [4].
Treatment decisions for proximal humerus fractures must
carefully consider the specific anatomical characteristics of
the fracture, the presence of concurrent soft tissue injuries,
and other individual factors, with options ranging from
conservative approaches to surgical interventions [5].
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The integrity of bones is paramount for facilitating
human mobility and overall functionality. Surgical
intervention is typically favoured for fractures involving
significant tuberosity displacement, as this mitigates the risk
of further displacement and subsequent functional
impairment. Orthopaedic specialists rely on imaging
modalities like X-rays and CT scans [6] to diagnose and
assess the extent of proximal humerus fractures [7].
Emerging technologies, such as artificial intelligence (Al),
Deep Learning (DL) [8] hold promise in enhancing the
diagnostic accuracy of proximal humerus fractures. Al [9]
algorithms trained on shoulder CT images can accurately
identify and classify these fractures, offering a potential
solution to the shortage of professionals available to interpret
such scans promptly [10-11]. Despite the diagnostic potential
of CT imaging, the timely analysis of scans remains a
challenge due to the limited availability of skilled
radiologists. To overcome these problems, a novel DL-based
BON-VNET model is proposed for the detection of fracture
in bone. The main contribution of the proposed work is
organized as follows

e Initially, the input CT image is pre-processed
utilizing adaptive bilateral filter to remove the noise
and enhance the quality of image.

e Then, the images are segmented using V-Net
segmentation model. Afterward the segmented
images are fed as an input the HOG based feature
extraction phase for extracting the relevant features.

e Finally, the ML based ANFIS approach is employed
for the classification of PHF images.

The remainder of the research paper is structured as
follows: Section 2 offers a list and summary of relevant
works. Section 3 delves into the detailed explanation of the
proposed deep learning method for identifying and
categorizing proximal humerus fractures. The experimental
findings and ensuing discussion are presented in Section 4.
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Finally, Section 5 concludes the paper and outlines avenues
for future research.

2. LITERATURE SURVEY

In 2020 Tanzi, L et al., [12] suggests employing a
multistage DL approach to identify proximal femoral X-ray
images. This involves using a tailored InceptionVV3 CNN and
a multistage design consisting of a cascade of CNN. The
experiment achieved an average accuracy of 0.86 in
classifying hip fractures (HF).

In 2021 Smith, J et al., [13] suggested categorization of
PHF using the Neer method could potentially be improved
by incorporating three-dimensionally printed models. Kappa
values (K), percentage agreements, and 95% confidence
intervals were employed to measure both interobserver and
interobserver agreements.

In 2021 Askittou, S et al.,, [14] Suggested the
examination of the consistency among different observers
and within the same observer regarding the morphological
Mutch categorization for fragments in the GT in PHF, the
number of fragments, utilizing three distinct imaging
modalities. The findings reveal that the developed model
achieves 67% agreement in 2-D or 3-D CT imaging.

In 2022 Foruria, A.M et al., [15] designed the Mayo-
Fundacion Jimenez Daz (FJD) for classification of PHF. The
classification encompasses seven typical fracture patterns.
Interobserver agreement for X-rays averaged 69%, while for
CT scans it achieves 81%. The anteroposterior X-ray used
for analysis was obtained in internal rotation rather than the
scapular plane.

In 2022 Dipnall, J.F et al., [16] presents a method for
diagnosing PHF using ML multiclass classification
techniques. This approach utilizes standard unstructured X-
ray and CT scan reports along with patient data processed
through ML and BERT algorithms. The performance of
various statistical ML algorithms was found to be

commendable, with BERT models achieving an accuracy
rate of 61%.

In 2023 Ripoll, T et al., [17] suggested a computerized
system to accurately measure the uniform and reliable 3D
spatial displacements of PHF. This system utilizes the Neer
classification method for 3D measurement. It enables precise
measurement of the displacements of fracture fragments in
PHFs using a three-dimensional computerized approach. The
analysis focuses solely on the four primary fragments,
excluding smaller fragments. The experiment yielded a 91%
success rate.

In 2023 Cangbéz G.B. and Giiney S [18] introduces
traditional methods of data augmentation for detecting long
bone fractures. It utilizes the Inception-v3 network and
Support Vector Machines (SVMs) to classify images and
identify fractures. SVM serves as the classifier, while
Transfer Learning is applied to extract features from both
original and augmented datasets. The experiment yields an
84.5% accuracy rate in long bone fracture detection.

From the above study, current methods for categorizing
and detecting bone fractures demonstrate inadequate
accuracy. To overcome these issues, this study presents a
newly developed model aimed at identifying and
categorizing PHF based on CT data. One of the challenging
aspects in the process of detecting and segmenting PHF
involves removing extraneous features and determining
crucial ones.

3. PROPOSED METHOD

In this paper, a novel DL-based BON-VNET model is
proposed for the detection of fracture in bones. The input
image is pre-processed utilizing adaptive bilateral filter.
Then, the images are segmented using V-Net segmentation
model. Afterward the segmented images are fed as an input
the HOG based feature extraction phase for extracting the
relevant features. Finally, the ML based ANFIS approach is
employed for the classification of PHF images. Figure 1
shows the proposed BON-VNET methodology.
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Figure 1. Schematic Illustration of proposed BON-VNET model
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3.1. Adaptive Bilateral Filter

By allowing pixels to contribute selectively to the scaled
average, the bilateral filter effectively reduces noise in
images while maintaining edge details. The bilateral filter
yields ideal results where pixels on one side of the border
influence the modified pixel value due to bilateral effects,
resulting in smooth images with important data, equation (1).

Zieay = Ngn (0D 3235 64n (¢, d, L, NI+ i, d +)) (1)
The normalization bilateral filter, represented by N,
utilizes &4y, to signify the dimensions for individual pixels
within the filter space. It smooths the function f, (g, h) to
estimate the Gaussian size, incorporating a Gaussian weight
factor via a visual inclusion factor for adaptable pixel value
selection in the scaled overall form (c, d, i, ), equation (2).

Sgh(cﬂ d,ij)= fa (g.h) (2)
Ngn is serving as a normalization factor Which is
computed by inversing the total dimensions.

The bilateral filter functions as a non-linear noise reduction
filter. Outcomes are influenced by filtering and pixel-level
factors, equation (3) is utilized to determine the range of filter
pixels, considering their distance from the central point.

. 1
g -1 =20 U6 @3)
In the equation provided, the pixel value of the image
position is denoted by j—1, corresponds to the spatial
function represented by 2.

3.2. Segmentation

The Volumetric Convolutional Net (V-Net) is a
progressive DL structure crafted for image segmentation.
Comprising a symmetrical five-layer network, it incorporates
an encoder for extracting spatial features from images, a
decoder for constructing segmentation graphs based on
encoded features, and a skip connection framework that
merges positional data from the encoding path with
contextual data from the decoding path. This integration aims
to address the absence of edge features and spatial data
during the decoding phase. Additionally, residual units are
incorporated into the network to mitigate the loss of network
gradient, and the assessment is articulated through equation

(4).

88 =9gct Z F (gm' m) (4)

This deS|gn helps the network retain fine-grained spatial
details during the segmentation process. In the given
equation, F represents the residual value, g,, stands for the
input feature image, and k,,, denotes the size associated with
the residual units.

The V-Net employs convolutional and transpose
convolutional layers for up sampling. The number of
channels in the feature map is ultimately adjusted through a
1*1 convolution in the last layer, and the final probability
map is generated using a sigmoid function. To prevent
overfitting, a dropout layer is added at the end of each layer's
residual unit.

3.3. HOG based Feature Extraction

Histogram of Oriented Gradients (HOG) is a powerful
feature descriptor commonly used in computer vision tasks,
particularly in object detection. It works by describing the
local object appearance and shape within an image based on
the distribution of gradient orientations. The first step is to
calculate the gradient values of the image. These filters help
to capture the changes in intensity or color across the image,
which are indicative of edges and other important features,
equation (5) and (6).

-101] (5)

.

If the object image is 1, the factor z and x is obtains
utilizing the below convolution operation, equation (7) and

(8).

I, =1, x4, (7)
L =1 XA, 8)

From the above evaluation the gradient of magnitude is
calculated utilizing the equation (9).

lgl =1z + 1} 9)

These blocks can overlap with each other, allowing for
better coverage of the image and capturing more spatial
information. Finally, normalization is applied to the feature
vectors within each block to account for variations in lighting
and contrast across different regions of the image. This
normalization step helps to make the descriptor more robust
to changes in illumination and improves its discriminative
power. By capturing the distribution of gradients in different
spatial regions of the image, the HOG descriptor provides a
compact and informative representation of local object
appearance and shape, making it well-suited for computer
vision applications.

3.4. Classification

The ANFIS utilizes an adaptive system framework
integrating a fuzzy Sugeno model, enhancing its learning and
adaptability. This framework reduces reliance on expert
knowledge, making ANFIS modeling more systematic,
equation (10) and (11).

Rule 1:If (bist;)and (d is ny)then (f; = z;b + x,d +

51) (10)
Rule 2 : If (bis t,)and (d is ny)then (f, = z,b + x,d +
S2) (11)

From the equation, u are the inputs, t; and n, are the
fuzzy sets, f, be the outputs within the fuzzy region specified
by the fuzzy rule z;, x,, and s, are the design factors that are
determined during the training process. The output of layer 1
is determined by the fuzzy membership class of the
components provided, equation (12) and (13).

= Ap(b) (12)

Py = An,_,(d) (13)
From the equation, A,(b)and A, _,(d) are adopt fuzzy
membership function. The nodes in the second layer remain
fixed and operate as fundamental multipliers based on their
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respective labels. Below is an illustration of the outputs from
this layer, equation (14).

pl = Ap(D)Ay,,_,(d) (14)
Additionally, the nodes located in the third tier are
stationary nodes, denoted by the letter N alongside their
designation, indicating their role in standardizing, equation
(15).
P = (15)
Nodes with adaptability can be located within the fourth
layer, where each node's output in every layer is the product
of multiplying the first-order polynomial by the normalized
firing strength and the model's overall output as depicted in
equation (16).

2-2: tpdp
p§ =t (26)
The ANFIS architecture incorporates two adaptive
layers, namely the initial and fourth layers. Within the initial
layer, there are three adjustable  parameters
(an, Bn, vn)associated with input membership functions,
known as premise parameters.

4. RESULTS AND DISCUSSION

The effectiveness of the suggested BON-VNET network
is evaluated in using the MDCT dataset [19]. This dataset is
employed to gather the input CT images, which are
subsequently pre-processed to prepare them for further
analysis.

Input

Pre-processing image

Feature Extraction Classification

Surgical neck

Tuberosity

Normal

Surgical neck

Figure 2. The proposed BON-VNET Model's outcomes from experiments

Figure 2 illustrates the results of the proposed BON-
VNET model's visualization. Initially, the input CT images
undergo denoising in column 1 to remove distortions and
improve image quality, as shown in column 2. These
denoised images are then processed for feature extraction in
column 3. Subsequently, the cleaned and detected images are
inputted into the ANFIS model to classify proximal humerus
fractures, including tuberosity fracture, surgical neck
fracture, and normal cases, as depicted in column 4.

4.1. Performance Analysis

The effectiveness and performance of the suggested
BON-VNET model were verified using evaluation metrics.
True Positive (True P), True Negative (True N), False
Positive (False P), and False Negative (FalseN) are the four
main and essential metrics that are frequently employed to
determine performance, equation (17), (18), (19) and (20).

Accuracy = True BaTrue N x 100 @an

True P+True N+False P+False N
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True P

Precision = ——— (18)
True P+False P
Recall = —2P (19)
True P+False N
F1 — Score = % (20)
Table 1. Analysis of Proposed Method Statistics
Classes Accu | Precisi | Recal | Specifi | F1
racy | on I city score
Tuberosit | 99.81 | 99.13 97.98 | 97.02 98.47
y
Normal 99.76 | 98.89 97.88 | 95.78 98.55
Surgical | 99.87 | 98.95 96.11 | 96.92 97.23
Neck

The following Table 1 illustrates the effectiveness of the
proposed BON-VNET model to classify the different
Proximal humerus cases. A 99.77% accuracy rate is achieved
by the proposed model.
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Figure 3. Accuracy of proposed BON-VNET model
Figure 3 accuracy graph was generated by utilizing 100
epochs and observing an accuracy trend. As the number of

epochs rises, the accuracy of the suggested model is
increases.
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Figure 4. Loss of proposed BON-VNET model

Figure 4, which displays the epochs and loss range,
shows that increasing the epochs reduces the loss of the
suggested model. After 100 training epochs, the suggested

model demonstrated a 99.77% detection accuracy with a low
error rate.

4.2. Comparative Analysis

The efficacy of the suggested approach yields highly
accurate results. The suggested Networks underwent
competency testing using DL algorithms: Random Forest,
and SVM. The proposed model accuracy is 99.77%, which is
more than that of the conventional DL networks.

Table 2. Comparison of multiple networks

Networ | Accura | Precisi | Reca | Specifici | F1
ks cy on I ty scor
e
SVM 99.29 97.15 | 964 95.74 | 96.3
0 4
Rando 99.27 98.18 | 97.3 96.30 | 96.2
m 4 7
Forest
propose | 99.77 98.29 97.2 97.72 97.4
d 1 4
ANFIS

Table 3. Compare the accuracy of existing models and the
proposed model

Author Methods Accuracy
Tanzi, L etal., InceptionV3 86%
[21] CNN
Ripoll, T et al., Neer 91%
[29] classification
Cangoz G.B. and SVM 84.5%
Guney S [30]
Proposed Model ANFIS 99.77%

The trial period for testing images collected from the
dataset has been set up to evaluate different approaches'
effectiveness, as detailed in Table 2. Various measures are
employed to compare existing models with high
classification accuracy. Proposed model exhibits an overall
accuracy improvement of 13.83%, 8.82%, and 16.95%
compared to InceptionV3 Near classification and SVM,
respectively. The proposed network demonstrates more
efficient data processing compared to previous networks.
Table 3 clearly shows that our innovative network surpasses
current methods.

5. CONCLUSION

In this paper, a novel DL-based BON-VNET model is
suggested for the detection of fracture in bones. The input
image is pre-processed utilizing adaptive bilateral filter.
Then, images are segmented using V-Net segmentation
model. Afterward the segmented images are fed as an input
the HOG based feature extraction phase for extracting the
relevant features. Finally, the ML based ANFIS approach is
employed for the classification of PHF images. From the trail
result, the proposed model achieves 99.77% of accuracy rate,
which is more than that of the conventional DL networks.
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Proposed model exhibits an overall accuracy improvement of
13.83%, 8.82%, and 16.95% compared to InceptionVV3 Near
classification and SVM, respectively. In the future, enhance
the suggested model by integrating more sophisticated deep-
learning methods to detect different types of fractures.
Furthermore, different segmentation techniques could be
employed to precisely locate the classified region.
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