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Abstract – Proximal humeral fractures are common injuries, 

especially in youngsters and the elderly, and usually correspond 

to 5–6% of all fractures. There has been a general increase in 

upper extremity fractures in children. Detecting PHF is the 

time-consuming process of manual diagnosis by professionals 

using X-ray images. In this paper, a novel deep learning-based 

BON-VNET model is proposed for the detection of fracture in 

bones. Initially, the input CT image is pre-processed utilizing 

adaptive bilateral filter. Then, the pre-processed images are 

segmented using V-Net segmentation model. Afterward the 

segmented images are fed as an input the HOG based feature 

extraction phase for extracting the relevant features. Finally, 

the machine learning (ML) based ANFIS approach is employed 

for the classification of PHF images. From the trail result, the 

proposed BON-VNET model achieves 99.77% of accuracy rate, 

which is more than that of the conventional DL networks. 

Proposed BON-VNET model exhibits an overall accuracy 

improvement of 13.83%, 8.82%, and 16.95% compared to 

InceptionV3 Near classification and SVM, respectively. 

Keywords – adaptive bilateral filter, V-Net, Deep learning, 

Machine Learning. 

1. INTRODUCTION 

Proximal humerus fractures are recognized as 

quintessential osteoporotic injuries, commonly afflict the 

elderly populace. These fractures encompass damage to 

various regions of the PH, including the greater tuberosity 

(GT), lower tuberosity, anatomical neck, or surgical neck [1-

2]. The proximal humerus, situated in the upper extremity, 

serves as a crucial component of the upper arm bone [3]. 

However, managing these fractures presents a challenge, 

attributable to factors such as inconsistent classification 

systems, lack of consensus regarding surgical indications, 

and the potential for difficult-to-treat complications [4]. 

Treatment decisions for proximal humerus fractures must 

carefully consider the specific anatomical characteristics of 

the fracture, the presence of concurrent soft tissue injuries, 

and other individual factors, with options ranging from 

conservative approaches to surgical interventions [5]. 

The integrity of bones is paramount for facilitating 

human mobility and overall functionality. Surgical 

intervention is typically favoured for fractures involving 

significant tuberosity displacement, as this mitigates the risk 

of further displacement and subsequent functional 

impairment. Orthopaedic specialists rely on imaging 

modalities like X-rays and CT scans [6] to diagnose and 

assess the extent of proximal humerus fractures [7]. 

Emerging technologies, such as artificial intelligence (AI), 

Deep Learning (DL) [8] hold promise in enhancing the 

diagnostic accuracy of proximal humerus fractures. AI [9] 

algorithms trained on shoulder CT images can accurately 

identify and classify these fractures, offering a potential 

solution to the shortage of professionals available to interpret 

such scans promptly [10-11]. Despite the diagnostic potential 

of CT imaging, the timely analysis of scans remains a 

challenge due to the limited availability of skilled 

radiologists. To overcome these problems, a novel DL-based 

BON-VNET model is proposed for the detection of fracture 

in bone. The main contribution of the proposed work is 

organized as follows 

• Initially, the input CT image is pre-processed 

utilizing adaptive bilateral filter to remove the noise 

and enhance the quality of image.  

• Then, the images are segmented using V-Net 

segmentation model. Afterward the segmented 

images are fed as an input the HOG based feature 

extraction phase for extracting the relevant features.  

• Finally, the ML based ANFIS approach is employed 

for the classification of PHF images. 

The remainder of the research paper is structured as 

follows: Section 2 offers a list and summary of relevant 

works. Section 3 delves into the detailed explanation of the 

proposed deep learning method for identifying and 

categorizing proximal humerus fractures. The experimental 

findings and ensuing discussion are presented in Section 4. 
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Finally, Section 5 concludes the paper and outlines avenues 

for future research. 

2. LITERATURE SURVEY 

In 2020 Tanzi, L et al., [12] suggests employing a 

multistage DL approach to identify proximal femoral X-ray 

images. This involves using a tailored InceptionV3 CNN and 

a multistage design consisting of a cascade of CNN. The 

experiment achieved an average accuracy of 0.86 in 

classifying hip fractures (HF).  

In 2021 Smith, J et al., [13] suggested categorization of 

PHF using the Neer method could potentially be improved 

by incorporating three-dimensionally printed models. Kappa 

values (k), percentage agreements, and 95% confidence 

intervals were employed to measure both interobserver and 

interobserver agreements.  

In 2021 Askittou, S et al., [14] Suggested the 

examination of the consistency among different observers 

and within the same observer regarding the morphological 

Mutch categorization for fragments in the GT in PHF, the 

number of fragments, utilizing three distinct imaging 

modalities. The findings reveal that the developed model 

achieves 67% agreement in 2-D or 3-D CT imaging. 

In 2022 Foruria, A.M et al., [15] designed the Mayo-

Fundacion Jimenez Daz (FJD) for classification of PHF. The 

classification encompasses seven typical fracture patterns. 

Interobserver agreement for X-rays averaged 69%, while for 

CT scans it achieves 81%. The anteroposterior X-ray used 

for analysis was obtained in internal rotation rather than the 

scapular plane. 

In 2022 Dipnall, J.F et al., [16] presents a method for 

diagnosing PHF using ML multiclass classification 

techniques. This approach utilizes standard unstructured X-

ray and CT scan reports along with patient data processed 

through ML and BERT algorithms. The performance of 

various statistical ML algorithms was found to be 

commendable, with BERT models achieving an accuracy 

rate of 61%.  

In 2023 Ripoll, T et al., [17] suggested a computerized 

system to accurately measure the uniform and reliable 3D 

spatial displacements of PHF. This system utilizes the Neer 

classification method for 3D measurement. It enables precise 

measurement of the displacements of fracture fragments in 

PHFs using a three-dimensional computerized approach. The 

analysis focuses solely on the four primary fragments, 

excluding smaller fragments. The experiment yielded a 91% 

success rate. 

In 2023 Cangöz G.B. and Güney S [18] introduces 

traditional methods of data augmentation for detecting long 

bone fractures. It utilizes the Inception-v3 network and 

Support Vector Machines (SVMs) to classify images and 

identify fractures. SVM serves as the classifier, while 

Transfer Learning is applied to extract features from both 

original and augmented datasets. The experiment yields an 

84.5% accuracy rate in long bone fracture detection. 

From the above study, current methods for categorizing 

and detecting bone fractures demonstrate inadequate 

accuracy. To overcome these issues, this study presents a 

newly developed model aimed at identifying and 

categorizing PHF based on CT data. One of the challenging 

aspects in the process of detecting and segmenting PHF 

involves removing extraneous features and determining 

crucial ones.  

3. PROPOSED METHOD 

In this paper, a novel DL-based BON-VNET model is 

proposed for the detection of fracture in bones. The input 

image is pre-processed utilizing adaptive bilateral filter. 

Then, the images are segmented using V-Net segmentation 

model. Afterward the segmented images are fed as an input 

the HOG based feature extraction phase for extracting the 

relevant features. Finally, the ML based ANFIS approach is 

employed for the classification of PHF images. Figure 1 

shows the proposed BON-VNET methodology. 

 
Figure 1. Schematic Illustration of proposed BON-VNET model 
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3.1. Adaptive Bilateral Filter 

By allowing pixels to contribute selectively to the scaled 

average, the bilateral filter effectively reduces noise in 

images while maintaining edge details. The bilateral filter 

yields ideal results where pixels on one side of the border 

influence the modified pixel value due to bilateral effects, 

resulting in smooth images with important data, equation (1). 

𝑧(𝑐,𝑑) = 𝒩𝑔ℎ(𝔬, 𝔩) ∑ 𝛿𝑔ℎ
3𝜎
𝔵=−3𝜎 (𝑐, 𝑑, 𝑖, 𝑗)ℐ(𝑐 + 𝑖, 𝑑 + 𝑗)      (1) 

The normalization bilateral filter, represented by 𝒩𝑔ℎ, 

utilizes 𝛿𝑔ℎ to signify the dimensions for individual pixels 

within the filter space. It smooths the function 𝔣𝔷 (𝑔, ℎ) to 

estimate the Gaussian size, incorporating a Gaussian weight 

factor via a visual inclusion factor for adaptable pixel value 

selection in the scaled overall form (𝑐, 𝑑, 𝑖, 𝑗), equation (2). 

𝛿𝑔ℎ(𝑐, 𝑑, 𝑖, 𝑗) = 𝔣𝔷 (𝑔, ℎ)                                                       (2) 

 𝒩𝑔ℎ is serving as a normalization factor Which is 

computed by inversing the total dimensions.  

The bilateral filter functions as a non-linear noise reduction 

filter. Outcomes are influenced by filtering and pixel-level 

factors, equation (3) is utilized to determine the range of filter 

pixels, considering their distance from the central point. 

𝔤(𝑗 − 𝔩) =
1

2
𝒬−(𝑗−𝔩)∧2(

1

2𝜏
)
                                                          (3) 

In the equation provided, the pixel value of the image 

position is denoted by 𝑗 − 𝔩, corresponds to the spatial 

function represented by 2τ.  

3.2. Segmentation 

The Volumetric Convolutional Net (V-Net) is a 

progressive DL structure crafted for image segmentation. 

Comprising a symmetrical five-layer network, it incorporates 

an encoder for extracting spatial features from images, a 

decoder for constructing segmentation graphs based on 

encoded features, and a skip connection framework that 

merges positional data from the encoding path with 

contextual data from the decoding path. This integration aims 

to address the absence of edge features and spatial data 

during the decoding phase. Additionally, residual units are 

incorporated into the network to mitigate the loss of network 

gradient, and the assessment is articulated through equation 

(4). 

gΒ = 𝑔𝑐 + ∑ Ϝ𝐵−1
𝑚=1 (𝑔𝑚, 𝑘𝑚)                                                     (4) 

This design helps the network retain fine-grained spatial 

details during the segmentation process.  In the given 

equation, Ϝ represents the residual value, 𝑔𝑚 stands for the 

input feature image, and 𝑘𝑚 denotes the size associated with 

the residual units.  

The V-Net employs convolutional and transpose 

convolutional layers for up sampling. The number of 

channels in the feature map is ultimately adjusted through a 

1*1 convolution in the last layer, and the final probability 

map is generated using a sigmoid function. To prevent 

overfitting, a dropout layer is added at the end of each layer's 

residual unit.  

 

 

3.3. HOG based Feature Extraction 

Histogram of Oriented Gradients (HOG) is a powerful 

feature descriptor commonly used in computer vision tasks, 

particularly in object detection. It works by describing the 

local object appearance and shape within an image based on 

the distribution of gradient orientations. The first step is to 

calculate the gradient values of the image. These filters help 

to capture the changes in intensity or color across the image, 

which are indicative of edges and other important features, 

equation (5) and (6).  

𝑎𝑧̇ = [−1 0 1]                                                                      (5)  

𝑎𝑥 = [
1
0
1

]                                                                              (6) 

If the object image is 1, the factor z and x is obtains 

utilizing the below convolution operation, equation (7) and 

(8). 

𝐼𝑧 = 𝐼𝑧 × 𝐴𝑧                                                                           (7)  

𝐼𝑥 = 𝐼𝑥 × 𝐴𝑥                                                                         (8) 

From the above evaluation the gradient of magnitude is 

calculated utilizing the equation (9). 

|𝑔| = √𝐼𝑧
2 + 𝐼𝑥

2                                                                       (9) 

These blocks can overlap with each other, allowing for 

better coverage of the image and capturing more spatial 

information. Finally, normalization is applied to the feature 

vectors within each block to account for variations in lighting 

and contrast across different regions of the image. This 

normalization step helps to make the descriptor more robust 

to changes in illumination and improves its discriminative 

power. By capturing the distribution of gradients in different 

spatial regions of the image, the HOG descriptor provides a 

compact and informative representation of local object 

appearance and shape, making it well-suited for computer 

vision applications. 

3.4. Classification 

The ANFIS utilizes an adaptive system framework 

integrating a fuzzy Sugeno model, enhancing its learning and 

adaptability. This framework reduces reliance on expert 

knowledge, making ANFIS modeling more systematic, 

equation (10) and (11). 

𝑅𝑢𝑙𝑒 1 ∶ 𝐼𝑓 (𝑏 𝑖𝑠 𝑡1)𝑎𝑛𝑑 (𝑑 𝑖𝑠 𝑛1)𝑡ℎ𝑒𝑛 (𝔣1 = 𝑧1𝑏 + 𝑥1𝑑 +
𝑠1)                                                                                              (10) 

𝑅𝑢𝑙𝑒 2 ∶ 𝐼𝑓 (𝑏 𝑖𝑠 𝑡2)𝑎𝑛𝑑 (𝑑 𝑖𝑠 𝑛2)𝑡ℎ𝑒𝑛 (𝔣2 = 𝑧2𝑏 + 𝑥2𝑑 +
𝑠2)                                                                                          (11) 

From the equation, 𝔲 are the inputs, 𝑡1 and 𝑛1 are the 

fuzzy sets, 𝔣1 be the outputs within the fuzzy region specified 

by the fuzzy rule 𝑧1, 𝑥2, and 𝑠1 are the design factors that are 

determined during the training process. The output of layer 1 

is determined by the fuzzy membership class of the 

components provided, equation (12) and (13). 

𝑝𝔬
1 = 𝐴𝑏(𝑏)                                                                         (12) 

𝑝𝔬
1 = 𝐴𝑛𝔬−2

(𝑑)                                                                        (13) 

From the equation, 𝐴𝑏(𝑏)and 𝐴𝑛𝔬−2
(𝑑) are adopt fuzzy 

membership function. The nodes in the second layer remain 

fixed and operate as fundamental multipliers based on their 
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respective labels. Below is an illustration of the outputs from 

this layer, equation (14). 

𝑝𝔬
1 = 𝐴𝑏(𝑏)𝐴𝑛𝔬−2

(𝑑)                                                           (14) 

Additionally, the nodes located in the third tier are 

stationary nodes, denoted by the letter N alongside their 

designation, indicating their role in standardizing, equation 

(15).  

𝑝𝔬
3 =

𝑡𝑏

𝑡1+𝑡1
                                                                                (15) 

Nodes with adaptability can be located within the fourth 

layer, where each node's output in every layer is the product 

of multiplying the first-order polynomial by the normalized 

firing strength and the model's overall output as depicted in 

equation (16). 

𝑝𝔬
5 =

Σ𝑖=1
2 𝑡𝑏𝜆𝑏

𝑡1+𝑡1
                                                                           (16) 

The ANFIS architecture incorporates two adaptive 

layers, namely the initial and fourth layers. Within the initial 

layer, there are three adjustable parameters 

(𝛼𝑛, 𝛽𝑛, 𝛾𝑛)associated with input membership functions, 

known as premise parameters.  

4. RESULTS AND DISCUSSION 

The effectiveness of the suggested BON-VNET network 

is evaluated in using the MDCT dataset [19]. This dataset is 

employed to gather the input CT images, which are 

subsequently pre-processed to prepare them for further 

analysis. 

 
Figure 2. The proposed BON-VNET Model's outcomes from experiments 

Figure 2 illustrates the results of the proposed BON-

VNET model's visualization. Initially, the input CT images 

undergo denoising in column 1 to remove distortions and 

improve image quality, as shown in column 2. These 

denoised images are then processed for feature extraction in 

column 3. Subsequently, the cleaned and detected images are 

inputted into the ANFIS model to classify proximal humerus 

fractures, including tuberosity fracture, surgical neck 

fracture, and normal cases, as depicted in column 4. 

4.1. Performance Analysis 

The effectiveness and performance of the suggested 

BON-VNET model were verified using evaluation metrics. 

True Positive (True P), True Negative (𝑇𝑟𝑢𝑒 𝑁), False 

Positive (𝐹𝑎𝑙𝑠𝑒 𝑃), and False Negative (FalseN) are the four 

main and essential metrics that are frequently employed to 

determine performance, equation (17), (18), (19) and (20). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
True P+𝑇𝑟𝑢𝑒 𝑁

True P+𝑇𝑟𝑢𝑒 𝑁+𝐹𝑎𝑙𝑠𝑒 𝑃+𝐹𝑎𝑙𝑠𝑒 𝑁
× 100                (17) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
True P

True P+𝐹𝑎𝑙𝑠𝑒 𝑃
                                                 (18) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
True P

True P+𝐹𝑎𝑙𝑠𝑒 𝑁
                                                          (19) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2

1
(𝑅𝑒𝑐𝑎𝑙𝑙)

 +
1

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

                                           (20) 

 

Table 1. Analysis of Proposed Method Statistics 

Classes Accu

racy 

Precisi

on 

Recal

l 

Specifi

city 

F1 

score 

Tuberosit

y 

99.81 99.13 97.98 97.02 98.47 

Normal 99.76 98.89 97.88 95.78 98.55 

Surgical 

Neck 

99.87 98.95 96.11 96.92 97.23 

The following Table 1 illustrates the effectiveness of the 

proposed BON-VNET model to classify the different 

Proximal humerus cases. A 99.77% accuracy rate is achieved 

by the proposed model.  

 
Figure 3. Accuracy of proposed BON-VNET model 

Figure 3 accuracy graph was generated by utilizing 100 

epochs and observing an accuracy trend. As the number of 

epochs rises, the accuracy of the suggested model is 

increases. 

 
Figure 4. Loss of proposed BON-VNET model 

Figure 4, which displays the epochs and loss range, 

shows that increasing the epochs reduces the loss of the 

suggested model. After 100 training epochs, the suggested 

model demonstrated a 99.77% detection accuracy with a low 

error rate. 

4.2. Comparative Analysis 

The efficacy of the suggested approach yields highly 

accurate results. The suggested Networks underwent 

competency testing using DL algorithms: Random Forest, 

and SVM. The proposed model accuracy is 99.77%, which is 

more than that of the conventional DL networks. 

Table 2. Comparison of multiple networks 

Networ

ks 

Accura

cy 

Precisi

on 

Reca

ll 

Specifici

ty 

F1 

scor

e 

SVM 99.29 97.15 96.4

0 

95.74 96.3

4 

Rando

m 

Forest 

99.27 98.18 97.3

4 

96.30 96.2

7 

propose

d 

ANFIS 

99.77 98.29 97.2

1 

97.72 97.4

4 

 

Table 3. Compare the accuracy of existing models and the 

proposed model 

Author Methods Accuracy 

Tanzi, L et al., 

[21] 

InceptionV3 

CNN 

86% 

Ripoll, T et al., 

[29] 

Neer 

classification 

91% 

Cangöz G.B. and 

Güney S [30] 

SVM 84.5% 

Proposed Model ANFIS 99.77% 

 

The trial period for testing images collected from the 

dataset has been set up to evaluate different approaches' 

effectiveness, as detailed in Table 2. Various measures are 

employed to compare existing models with high 

classification accuracy. Proposed model exhibits an overall 

accuracy improvement of 13.83%, 8.82%, and 16.95% 

compared to InceptionV3 Near classification and SVM, 

respectively. The proposed network demonstrates more 

efficient data processing compared to previous networks. 

Table 3 clearly shows that our innovative network surpasses 

current methods. 

 

5. CONCLUSION 

In this paper, a novel DL-based BON-VNET model is 

suggested for the detection of fracture in bones. The input 

image is pre-processed utilizing adaptive bilateral filter. 

Then, images are segmented using V-Net segmentation 

model. Afterward the segmented images are fed as an input 

the HOG based feature extraction phase for extracting the 

relevant features. Finally, the ML based ANFIS approach is 

employed for the classification of PHF images. From the trail 

result, the proposed model achieves 99.77% of accuracy rate, 

which is more than that of the conventional DL networks. 
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Proposed model exhibits an overall accuracy improvement of 

13.83%, 8.82%, and 16.95% compared to InceptionV3 Near 

classification and SVM, respectively. In the future, enhance 

the suggested model by integrating more sophisticated deep-

learning methods to detect different types of fractures. 

Furthermore, different segmentation techniques could be 

employed to precisely locate the classified region. 
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