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Abstract – Huntington's disease (HD) is a neurological 

condition caused by a trinucleotide repli-cation extension in the 

Huntington gene. The degeneration of the corticobasal gan-

glia's white matter networks causes progressive impairment of 

motor, cognitive, and neuropsychiatric functioning. Magnetic 

resonance imaging (MRI) is increasingly be-ing utilized to 

measure changes in the brain during the early stages of HD, as 

gene carriers for the disease demonstrate significant neuronal 

loss until the conclusion of the illness. The absence of tagged 

data is a significant challenge, particularly in the early phases 

of the illness. To overcome this, the study's proposed strategy is 

applied to MRI imaging of Huntington Disease. MRI pictures 

are pre-processed to reduce noise and improve image quality 

using normalization. ResNext is a deep learning system that 

uses MRI pictures to accurately restore hierarchical structures 

and ex-tract features. After extracting the features, the SNN 

network is utilized to classify the detection. Finally, by 

classifying MRI scans as normal, far, mild, near, or HD, the 

model improves the accuracy of Huntington Disease detection. 

The proposed HD-RSNN detection accuracy of this optimized 

system measured at 98.83%. The HD-RSNN datasets were used 

to validate the suggested approach, yielding accuracy val-ues of 

1.81%, 2.40%, and 0.35%, respectively. 

Keywords – Huntington's disease, deep learning, Magnetic 

resonance imaging, Labelled data. 

1. INTRODUCTION 

HD is a lethal autosomal dominant inherited disorder 

characterized by motor, behavioural, and cognitive 

symptoms. Structural changes in the striatum have been 

observed through imaging studies, with the volume of the 

putamen identified as a particularly sensitive marker for 

monitoring changes across the lifespan of individuals with 

HD [1]. Unlike many other degenerative conditions, the gene 

status is determined through a genetic test well in advance of 

the appearance of initial symptoms, rendering HD well-

suited for the assessment of innovative imaging-based 

methods. Various advanced techniques have been developed 

to detect structural modifications earlier in the progression of 

neurodegenerative diseases using anatomical MRI [2, 3]. The 

bulk of human illnesses are somewhat complicated, 

including a confluence of several genetic connections as well 

as epigenetic, environmental, and lifestyle factors. Still, there 

are sporadic instances of single-gene human disorders like 

SA and HD. These illnesses are referred to as monogenic 

diseases.  

HD is a significant neurological illness because of its 

severe clinical symptoms, inherited origin, and detrimental 

effects on households [4]. The symptoms of HD, an 

autosomal mainly inherited illness, include uncontrollable 

motions, gradual impairments of motor and mental function, 

and cognitive impairment. The condition usually manifests 

in the following decade of life, although it can manifest at 

any age from infancy to beyond seventy years of age. The 

average time between the diagnosis of an illness to death is 

between 15 and 20 years [5]. All over the world, HD has been 

linked to numerous nations and localities. The most prevalent 

HD grades are seen in European countries and cultures 

possessing European origin, like the US and Australia. The 

severity of the disease in India is still difficult to determine, 

but researchers think the rate is similar to that of European 

populations with the same haplotype, which is estimated to 

be 3 to 5 scenarios per 100,000 people, or 40,000–70,000 

cases of HD in India [6, 7]. Considering a statistic of 2.71 in 

100,000 and a diagnosis of 0.38 in 100,000, HD is a 

progressive neurological condition. The illness impacts 

movement, cognitive abilities, behavior and inherits in a self-

dominant fashion. The 50 areas of the HTT gene on DNA 

4p16.3 are affected by an extension of the cytosine, adenine, 

and guanine (CAG) triplet repeat. Since there is now no cure 

for this illness, research is continuing, and as a result, there 

is a greater demand for metrics that could objectively 

demonstrate how the illness is progressing. [8, 9]. 

 HD is a neurological condition that is inherited from 

parents and causes motor impairment, neuropsychiatric 

symptoms, and cognitive difficulties. It is also fatal. Those 

with a family history undergo gene testing to detect the HD-
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causing mutation. Gene-positive individuals typically 

manifest clinically significant symptoms around their mid-

40s, receiving an HD diagnosis [10]. Timely diagnosis, along 

with treatment, enables symptom management, as there is no 

cure for HD. At-home passive symptom monitoring aids in 

capturing real-world health data, facilitating a quicker HD 

diagnosis and improved treatment planning insight for 

clinicians [11]. The DNA analysis is one of the treatments for 

the identifying the HD patients, but still there is struggle in 

early identification of HD disease. HD patients benefit from 

a variety of therapies, which enhances their quality of life. 

The lack of a definitive biomarker for HD poses a challenge, 

as deep learning [12] models heavily rely on labelled data to 

learn patterns. In the absence of clear and consistent 

biological markers, training robust models becomes intricate, 

and the risk of misclassification increases. The primary goal 

of the research is to evaluate all current DL methods based 

on HD disease detection. By employing advanced deep 

learning models such as CNN [13], RegNet [14], YOLO [15] 

and so on contribute to detecting different types of diseases. 

The most recent deep learning research for detecting HD 

disease is discussed together with a thorough analysis of the 

advantages and disadvantages of the available approaches. 

The following lines provide a summary of the research's 

main findings. 

• Researching all advanced deep learning networks 

on the identification of HD disease with the 

gathered images. 

• To provide an in-depth review of many trustworthy 

data sources on HD disease. 

• Image processing techniques for recognizing HD 

diseases discussed the shortcomings of existing 

review papers on disease detection. 

• To present a future model for overcoming the 

current constraint and creating effective HD disease 

detection technology. 

The rest of the paper is planned as follows; chapter II 

offers a systematic study of datasets and existing study 

related to HD disease. The preliminary results are presented 

in chapter III and the survey discussion is explained in 

chapter IV, and the conclusion is expressed in chapter V. 

2. LITERATURE REVIEW 

In 2020 Hett, K et al., [16] suggest two main additions: 

first, DL techniques based on patches. Second, create a new 

patch-based abnormalities measure and apply the patch-

based grading technique to it. By using this technique, it is 

possible to identify specific structural anomalies in the test 

data from a range of normal standards. In comparison to 

conventional deep learning techniques, the study achieves 

95.8% efficiency utilizing MRI intensities. 

In 2022 Dang, K et al., [17] proposed a neural network 

method for classifying and segmenting neural tumors that 

makes use of MRI scan pre-processing techniques. For this 

task, three pre-processing methods are employed: 

information augmentation, WSO section, and gamma 

modification. Using Google Net and VGG techniques, the 

medical condition was detected with a maximum reliability 

of 97.44%. A few photographs are eliminated during 

categorization and classifier, which is a drawback. 

In 2022 Gopalsamy, A et al., [18] suggested predicting 

of neurodegenerative diseases using quadratic discriminant 

analysis using neuron imaging data and multilinear analysis 

of principal components. Wavelet transformations and 

histogram gradients are used to select qualities for further 

processing after the snapshot is handled using the Wie-ner 

filter and histogram equalization techniques, which also 

improve the image quality. With a 99.58% success rate, the 

test limits the quantity of visuals that can be produced 

utilizing the database. 

In 2022 Nair, A et al., [19] proposed motor deficits and 

apathy in HD have been associated with a hypothesized 

insufficient connectivity between the basal ganglia. The first 

four EPI images were removed in order to maintain constant 

state stability while processing MRI data. The images were 

then realigned, unwrapped, and smoothed using a Gaussian 

filter. Co-registration of structural visuals and EPI 

photographs was done. The pre-processed pictures were used 

to create a fictitious GLM (General Linear Model) in order 

to remove unwanted data sets from the location and valves. 

The 85.2% success rate that the recommended strategy 

produced is still insufficient. 

In 2022 Weiss, A.R et al., [20] suggested the rhesus 

macaque variant of HD reproduces important 

neuropathological changes along with motor and mental 

disorders. A gray matter mask, also known as a WM mask, 

is used for image pre-processing in all imaging modalities. 

The T2w SPACE MRI scanner was used to co-register the 

rest state images in a structural location. The study produced 

an 80% rate even though it did badly when compared to other 

states. 

In 2020 Scannell, C.M et al., [21] suggested Realistic 

cardiac perfusion MRI pre-processing using deep neural 

networks. to determine which time frame in the image series 

corresponds to the maximum output increase of the LV. The 

LV canal and LV myocardium are identified using the 

illustration. MRI imaging uses fully convolutional neural 

networks (FCNs) to detect structural elements. yields a 93% 

success rate, has quantifiable diffusion data, and does not 

provide a ground truth that is testable. 

In 2020 Li, H et al., [22] offered Livia NET variations, 

leveraging established methods for enhancing performance, 

to increase generalizability to individuals with significant 

neurodegeneration. In particular, stochastic elastic 

distortions for enhancing data and network input 

manipulation were investigated, together with Res-blocks in 

convolution neural systems. Utilizing pictures from the 

PREDICT-HD dataset, test the technique.   

In 2022 Zeun, P et al., [23] suggested digging into the 

period of time before symptoms appear, when white matter 

loss in the corticobasal ganglia starts in preHD. Using 

diffusion tractography, the Fixel-based approach enables 

voxel-level precision of intersecting white matter fibres. The 

TrackON-HD, dataset is utilized for the detection of HD. 

Employing diffusion tractography-derived atlases of the 

thalamus and striatum, every network was divided into seven 
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sub-regions per quadrant according to the predominant 

portion of cortical connection in every sub-region. 

In 2019 Zhang, S et al., [24] suggested a deep learning-

based gigantic analysis in HD to classify each action's 

information-based disease level. To expand the dataset 

without creating a contemporary artifact, the embedded 

technique Image Data Generator was used. Image pre-

processing is crucial for increasing model efficiency, and the 

results of 3D CNN are compared to ascertain the most 

dependable categorization. The method was unable to 

execute the actions with either the left or right foot. 

In 2020 YİĞİT, A et al., [25] proposed the use of deep 

neural networks and MRI scans to forecast Alzheimer's 

stage. After reading volumes of MRI brain data, images were 

processed using Nifti and HDR's multidimensional data 

structures. Three different viewpoints of T1 graded voxel 

MRI data were separated into two different dimensions using 

pre-processing techniques. Using the OASIS data collection 

for diagnosis, the researchers achieved an 86% classification 

efficiency by employing CNN.  

In 2019 Felix, J.P et al., [26] proposed the use of gait 

patterns as a predictive HD detection method. After being 

collected through a person's stride, time-based data is pre-

processed and features are retrieved. By detecting outliers 

and eliminating them at the initial processing stage, the 

proposed method manages noisy data and enables the 

detection of recurring patterns that result in a precise 

diagnosis of sickness. The KNN method of the test achieves 

97.2%, whereas several other methods perform appallingly.  

In 2023 Ouwerkerk, J et al., [27] proposed Enroll-HD 

with machine learning methods to maximize participant and 

variable inclusion, and developed dataset-based ways to 

improve the age at start of AAO estimation. RNNs were used 

to compute roughly 42% of the missing data in Enroll-HD 

using simple pre-processing, demonstrating the value of ML 

approaches. The accuracy is still inadequate even if the 

proposed method outperformed the existing state-of-the-art 

equipment level of 85.2%. 

In 2023 Maddury, S [28] Developing Huntington's 

Disease Reliable Prediction Using Medical Data and Simple 

Machine Learning. To be used for HD, the EEG and ECG 

data must first undergo pre-processing so that patterns and 

classification can be found. following data preparation and 

feature extraction from both the original and updated data. 

Even with the recommended method's 91.35% yield, it is still 

insufficient when compared to other methods. 

3. PROPOSED METHODOLOGY 

In this study the HD-RSNN proposed method is to detect 

the Huntington Disease detection using MRI images. The 

MRI image is taken as an input and preprocessed using 

Normalization to reduce the noise and increase image 

quality. The normalized images are fed into feature 

extraction exact hierarchical properties from MRI images 

using ResNext Network and the extracted features are 

classified as Normal, Far, Mild, Near, HD using Spiking 

Neural Network. Figure 1 shows the approach for detecting 

Huntington Disease.  

 

Figure 1. HD-RSNN Proposed Method 
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3.1. Dataset Description 

The summary of studies conducted on HD, providing 

insights into the deep learning techniques for analysis. The 

datasets used in these studies vary, encompassing both 

publicly available datasets and self-generated datasets. 

PREDICT-HD, BraTS 2019, DS-66, DS-75, DS-160, and 

DS-255, TRACK-ON HD, OASIS and MIRIAD and self-

generated datasets are utilized in the relevant study. 

The PREDICT-HD contains 1091 images Which 

involves individuals genetically predisposed to HD. The data 

are attaining from 96% Caucasian, 89% right-handed, 70% 

married, and 77% employed, with 64% females. Participants' 

average age was 42.1 years, and 90% had at least a high 

school education, averaging 14.5 years of education. 

The 239 participants in the TRACK-ON HD dataset are 

divided into three groups: (1) 106 individuals without HD but 

with the mutant huntingtin gene, (2) 22 early HD patients, 

and (3) 111 controls who are matched for age and sex. Newly 

enrolled preHD participants had to have a disease burden 

score greater than 250 and a CAG repeat length of at least 40. 

Manifest disease, age <18 or >65, significant neurological, 

mental, or medical disorders, and a history of serious head 

trauma were among the exclusion criteria.  

The tests use the datasets DS-66, DS-75, DS-160, and DS-

255, which contain 66, 75, 160, and 255 images, respectively. 

T2-weighted MR brain scans with a 256×256 axial plane 

spatial resolution are represented by each image in these 

datasets. Because T2 model images have better contrast and 

clarity than T1 and PET, they are selected. 

4. RESULTS AND DISCUSSION 

The methodologies for classifying and identifying 

Huntington Disease Detection are briefly compared in the 

section below. 

Table 1. Comparison of various techniques for finding of skin tumor. 

Author& year Dataset Data 

descriptio

n 

Pre-processing 

methods 

Segmentation Classificatio

n 

Validation 

results 

2020 Hett, K et 

al., [16] 

PREDICT-

HD  

750 

MPRAGE 

images 

non-local means filter 

and piece-wise linear 

histogram 

normalization 

 

- 

CNN Accuracy-

95.8% 

 

In 2022 Dang, 

K et al., [17] 

BraTS 2019 335 images  gamma modification, 

WSO section, and 

information 

enhancement 

U-Net Google 

Net and 

VGG 

Accuracy-

97.44% 

2022 

Gopalsamy, A 

et al., [18] 

DS-66, DS-

75, DS-160 

and DS-255 

66, 75, 160 

and 255 

images 

Wiener filter, and 

histogram 

equalization 

 

- 

RDA Accuracy-

99.58% 

2022 Nair, A et 

al., [19] 

TRACK-ON 

HD 

102 Scans Gaussian filter  

- 

Region of 

interest 

(ROI) 

Accuracy-

83.8% 

2022 Weiss, 

A.R et al., [20] 

Self-

Generated 

5374 

images 

Gray matter mask, 

and WM mask 

 

- 

AAV-based 

approach 

Accuracy-

80% 

2020 Scannell, 

C.M et al., [21] 

Self-

Generated 

1050 

image 

 

- 

U-Net CNN Accuracy-

93% 

 

2020 Li, H et 

al., [22] 

PREDICT-

HD dataset 

750 

MPRAGE 

images 

Data augment, Livia NET ResNet Accuracy-

93.7% 

 

2022 Zeun, P et 

al., [23] 

TrackON-

HD, dataset 

72 preHD 

disease 

image and 

85 controls 

images 

MRtrix3 and FSL diffusion 

tractography 

 

- 

Accuracy-

92.4% 

 

2019 Zhang, S 

et al., [24] 

Self-

Generated 

180 images Footprint Formation 

Process, Data 

augment 

 

- 

VGG Accuracy-

89% 

2019 Felix, J.P 

et al., [26] 

Self-

Generated 

36 images median filter  

 

- 

KNN Accuracy-

97.2%, 

2023 

Ouwerkerk, J et 

al., [27] 

Enroll-HD 21000 

images 

 

- 

 

- 

RNN Accuracy-

85.2% 
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2023 Maddury, 

S [28] 

Self-

generated 

69 images discrete wavelet 

transforms 

-     Random 

Forest (RF) 

Accuracy-

91.35% 

2024Vethavikas

hini, A.M[29] 

HD-RSNN 120 images Spiking Neural 

Network 

- 

 

CNN Accuracy-

98.83% 

In this section, a deep learning model for diagnosing HD 

is mentioned and discussed. The pre-process models and 

various datasets that were utilized to identify HD are 

discussed. When contrasted with the models given below, 

RDA performs well and beats other models with 99.58% 

reliability.  Table 1 below displays a comparison of various 

methods for pre-processing, segmenting and classifying HD.  

The table summarizes various studies conducted in 

recent years that utilize deep learning approaches for the 

detection and classification of HD based on different 

datasets. It is evident from the table that various datasets such 

as PREDICT-HD, BraTS 2019, DS-66, DS-75, DS-160, DS-

255, TRACK-ON HD, and Enroll-HD were used, each with 

its unique characteristics and sizes. Pre-processing methods 

included techniques like non-local means filtering, gamma 

modification, WSO section, and information enhancement. 

The segmentation techniques varied, with U-Net being a 

popular choice. Classification models encompassed CNNs, 

RDA, AAV-based approaches, VGG, ResNet, KNN, and 

random forests. Notably, the reported accuracy rates ranged 

from 80% to 99.58%, highlighting the efficiency of deep 

learning in the context of HD detection. These studies 

collectively contribute to the growing body of research 

utilizing advanced computational methods for the early 

diagnosis and classification of HD. 

Existing deep learning methods for categorizing HD 

have shown encouraging results, with models obtaining high 

accuracy in identifying healthy and abnormal patients. The 

variety of CNN was demonstrated to outperform more 

established machine learning techniques in a number of 

noteworthy comparative studies. MRI images of HD 

detection is shown in Figure2. 

 

Figure 2. MRI Image for Huntington Disease diagnosis research 

4.1. Performance Evaluation Measures 

This section describes the metrics used to measure 

classification performance described in this section. 

Developed deep learning model is available in the dataset, 

which includes the number of samples. The metrics are 

accuracy, specificity, sensitivity (recall), F1-score. Macro𝐹 

Specficity =
TN

TN+ FP
                                                              (1) 

Precision =
TP

TP+ FN
                                            (2) 

Accuracy =  
TP+TN

TP+TN+FP+FN
                                                        (3)  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝑇𝑁
                                                                  (4) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)
                                         (5)    
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This work used for basic evaluation measures, like 

accuracy, precision, and recall, F1 score, to evaluate the 

proposed SNN-based application. The classification is either 

normal, far, mild, near, HD of Huntington Disease Detection.  

 

Figure 3. Performance Matrices 

 

Figure 3 shows performance evaluation of Proposed 

Methodology. F1-Score, recall, accuracy, specificity, 

precision are to assess how effective the proposed 

methodology is. The proposed model's total accuracy is 

98.83%.  

 

Figure 4. Performance metrics 

Performance metrics of different segmentation were 

compared using a table shown in figure 4. F1-Score, 

accuracy, precision, specificity, and recall to evaluate 

segmentation performance. SNN outperforms other 

algorithms like ANN and CNN in terms of emotion 

identification accuracy, with a rate of 98.83%.  

5. CONCLUSION 

In this study, the proposed method is applied to MRI 

imaging to Huntington Disease. Input MRI images are pre-

processed to decrease noise and increase image quality using 

Normalization. ResNext is a deep learning system that 

accurately recovers hierarchical properties from MRI images 

and is used for feature extraction. After extracting feature, 

the SNN network is used to classify the detection. Finally, by 

classifying MRI images as normal, far, mild, near, HD, the 

model aids in early detection and diagnosis of Huntington 

Disease detection accuracy is improved. The proposed HD-

RSNN detection accuracy of this optimized system has been 

measured at 98.83%. The HD-RSNN datasets were utilized 

to validate the proposed approach, with accuracy values of 

1.81%, 2.40%, and 0.35%, respectively. 
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