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Abstract — Elderly health requires continuous monitoring to
enable early detection of neurodegenerative conditions. This
study positions Parkinson’s disease (PD) detection as a core
function of an IoT (Internet of Thing)-based elder monitoring
system that collects voice and sensor data for remote analysis.
Initially, voice signals are denoised using an adaptive wavelet
thresholding (AWT) method, which effectively suppresses
background noise and enhances the image. The proposed PD-
LSTM can be integrated as the deep learning decision module
in an IoT-based elder monitoring framework, enabling
automated, continuous monitoring and alerting for caregivers
and clinicians. Mel Frequency Cepstral Coefficients (MFCC)
are used as a feature extraction technique to produce
discriminant features, and a sparse autoencoder is used to
extract the features of the voice signal (VS). Finally, the Bi-
directional LSTM (BDLSTM) used to classify the PD such as
normal, and Parkinson. The proposed PD-LSTM approach not
only enhances Parkinson’s detection accuracy but also forms a
potential component of an IoT-enabled elder monitoring
ecosystem, providing continuous and intelligent healthcare
assistance. The performance of the PD-LSTM approaches was
assessed using the metrics such as F1 score, specificity, recall,
accuracy, and precision. The PD-LSTM approach achieves a
high accuracy of 99.22% for PD. The PD-LSTM improves the
accuracy range of 10.47%, 3.19% and 11.85% better than
ZFNet-LHO-DRN, FB-DNN, and Ma-ST-DGN respectively.

Keywords — Parkinson disease, loT, Elder monitoring, Voice signal,
Mel Frequency Cepstral Coefficients, sparse autoencoder.

1. INTRODUCTION

Parkinson's disease (PD), a neurodegenerative condition
of the central nervous system, is distinguished by progressive
degradation of dopaminergic neurons in the midbrain [1]. PD
symptoms might include tremors, rigid muscles, involuntary
movements (dyskinesia), speech and writing abnormalities,
altered posture, restricted or slow movement (Bradykinesia),
and disturbed balance [2]. With the rapid advancement of
Internet of Things (IoT) technologies, healthcare monitoring
systems have shifted toward continuous remote observation
of elderly individuals. By combining deep learning
algorithms such as PD-LSTM with IoT-enabled sensors,
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early detection of Parkinson’s symptoms can be automated,
enabling proactive elder health monitoring and intervention

[2].

PD, the second most common neurological disease after
Alzheimer's, (AD) affects 8-10 million people worldwide,
according to estimates from the Parkinson's Foundation (PF)
in the United States [5]. PD is normally diagnosed by a
healthcare professional based on the patient's complaints and
the findings of a post-disease neurological evaluation [6].
Despite the fact that several expensive procedures, such as
radiological imaging methods like computer tomography
(CT), X-ray imaging, single-photon emission CT/dopamine
transporter scan, etc. [7], can only diagnose PD after it has
spread throughout the brain [8, 9]. Speech, handwriting,
tremor, and walking are among the physiological signs used
to identify PD. Speech signals represent the non-motor
symptoms of PD [10]. With the increasing availability of
low-cost IoT devices and wearable sensors, continuous
remote monitoring of elderly individuals has become
feasible. Integrating speech and sensor data with deep
learning modules (such as the PD-LSTM proposed here)
enables an IoT-based elder monitoring system that can detect
early signs of Parkinson’s and notify caregivers or clinicians
for timely intervention.

Machine learning (ML) and deep learning (DL)
approaches were also applied to differentiate between
individuals with PD and healthy individuals. Acoustic,
spectral, and cepstral features that are taken from speech
signals serve as the foundation for traditional ML techniques
[11]. Recently, DL [12] techniques have produced
remarkable results in PD classification tasks [13]. In
classification problems, a variety of algorithms, including
convolutional neural networks (CNNs), demonstrated the
highest accuracy. CNNs have been used in image, audio, and
video classification because of their superior ability to
identify different input elements and generate the correct
categorization [14].
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However, the existing method was limited by the dataset
used, which might not accurately capture the diversity
encountered in real-world healthcare environments. The lack
of external validation on distinct datasets compromises the
model's robustness across a variety of demographics and
recording settings. Furthermore, while the model performed
well in controlled conditions, it has not yet been tested in the
noisy or unstructured situations found in clinical practice,
which may influence its dependability in more general
diagnostic applications. To overcome this problem, the PD-
LSTM approach for PD. The important contributions of the
PD-LSTM approaches are as follows:

e Adaptive Wavelet Thresholding (AWT) is used
to enhance the voice signal and remove
background noise from human speech.

e The proposed PD-LSTM can be integrated as
the deep learning decision module in an [oT-
based elder monitoring framework, enabling
automated, continuous monitoring and alerting
for caregivers and clinicians.

e MFCCis used as a feature extraction method to
produce discriminative features, while SAE
extract the feature and enhances the
performance of PD.

e The BDLSTM was wused to improve
classification accuracy and efficiently
distinguish between normal and Parkinson.

e The PD-LSTM model efficiency was assessed
using metrics like F1 score, specificity, recall,
accuracy, and precision.

The structure of this paper and other parts of this work
is as follows: Section 2 presents the literature review. The PD
classification is explained in Section 3, while the findings
and discussion of the PD-LSTM approaches are explained in
Section 4. The conclusion and recommendations for further
research are included in Section 5.

2. LITERATURE SURVEY

In this paper, researchers have proposed a number of
machine learning (ML) and DL designs for PD. GCN, CNN,
and RF have been used with various techniques and designs
for PD in the research studies that have been proposed. Some
of the research are examined in the following section.

In 2024 Saha et al. [15] proposed a PD classification
using Graph Convolutional Networks (GCNs) and Euclidean
distance-based graph construction. The proposed method
leverages the power of GCNs to learn meaningful
representations from graph-structured data while utilizing
Euclidean distances to capture the similarity between patient
samples. The proposed GCN-based model achieves a high
classification accuracy of 97.4% on the test set,
outperforming traditional ML methods such as SVM and RF.

In 2025 Shanmugam et al. [16] developed an optimized
deep learning model for PD classification using VS and
hand-drawn spiral images, leveraging a ZFNet-LHO-DRN.
The ZFNet-LHO-DRN approach demonstrated excellent
performance by achieving a premium accuracy of 89.8%.

In 2025, Valarmathi et al. [17] introduced a promising
and new strategy for PD detection that integrates FB-DNN
approaches and makes use of cutting-edge audio signal
processing tools. Deep Neural Networks (DNN) combined
with autoencoder-based feature extraction provide a
dependable and simple-to-operate method for PD early
detection and continuing monitoring. The best accuracy
score of 96.15% was attained by the FB-DNN.

In 2025, Hasib et al. [18] developed an automated
method that uses time-frequency image analysis of EEG
waves to detect Parkinson's disease. The ERSP data were
classified using a DL model, which allowed PD patients to
be distinguished from healthy controls. The accuracy of the
DL model in distinguishing between PD patients and healthy
controls was 94.64%.

In 2025, Islam et al. [19] developed a hybrid approach
for PD detection that combines CNN and LSTM. While
LSTMs record temporal correlations, CNNs gather spatial
information from the spectro-temporal components of voice
data, enabling a more comprehensive analysis of how speech
patterns change over time. The results indicate that the model
has a remarkable 99.00% accuracy rate in identifying
Parkinson's illness.

In 2025 Huo et al. [20] introduced a Ma-ST-DGN
approach is a new DL model for PD identification using
video dataset (VD). The approach effectively gathers
temporal and geographical information from patients'
movement data to better identify subtle movement
abnormalities. Comprehensive testing on this clinical VD
indicates the approach outperforms current sensor and
vision-based algorithms for assessing PD gait, with an
accuracy of 88.7%.

In 2025 Luo et al. [21] introduced a technique for
distinguishing PD mice from normal mice using pressure
sensor-captured footprint images. Because only one
technique was utilized to develop the PD mouse model, the
results cannot be extended to other PD models or situations.
The results presented that when a multimodal data fusion
strategy was employed instead of an image recognition
method, the average classification accuracy for PD mice was
96.56%.

In the literature review, these current approaches have
several limitations like difficulty in classifying PD because
of low-quality signals, especially in real-world clinical
settings where data variability is high. To overcome this
problem, the PD-LSTM approach in PD.

3. PROPOSED METHODOLOGY

In this paper, a novel PD-LSTM approach is proposed to
classify Parkinson’s disease (PD) from voice signals (VS) as
part of an IoT-based elder monitoring system for remote
health tracking. The voice signals are denoised using
Adaptive Wavelet Transform (AWT), features are extracted
using  MFCC and Sparse Autoencoder (SAE), and
classification is performed with a Bi-Directional LSTM
(BDLSTM) to distinguish between normal and Parkinson
cases, as shown in Figure 1.
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3.1. Dataset

In this research, the Early Warning of Alzheimer speech
database (EWA-DB) [22] was taken from the publicly
available dataset for Parkinson disorder classifcation. The
EWA-DB speech database includes information from three
clinical groups: mild cognitive impairment, PD, AD, and a
control group of healthy individuals. Speech samples were
collected from each clinical group using the EWA
smartphone app, which includes four language tasks:
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sustained vowel phonation, diadochokinetic, object and
action naming, and image description. The database has a
total of 1649 speakers. There are 1323 healthy controls, 87
AD patients, 175 PD, 62 people with mild cognitive
impairment, and two people who have both AD and PD. We
distribute audio recordings in WAV format to speakers (a
total of 1003 speakers) who provided written consent.
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Figure 1. Overall workflow of the PD-LSTM approach

3.2. Preprocessing

Adaptive wavelet thresholding (AWT) function is
employed to enhance speech quality and improve the
accuracy of automated speech recognition (ASR). The
utilized adaptive threshold based on the wave cleans the
audio signals from the background noises, unnecessary
information, and silent portions. Here, we use a direct
relation approach to determine the correlation between
energy and amplitude in voice signals. In this process, a
direct relationship between energy and amplitude in the voice
signal is considered. Since the amplitude of a wave is
proportional to its energy content, it serves as an indicator of
signal strength where higher amplitudes correspond to more
energetic and meaningful parts of the voice signal.

D = A X sin(2nft) @)

Where, D represents the particle displacements, f is the
frequency with respect to time t, and A denoted the
amplitude.

3.3. IoT-Based Framework Integration

10

The PD-LSTM model is designed to be integrated into an
IoT-based elder monitoring system. In this framework,
wearable microphones and other sensors continuously collect
voice and movement data from elderly users. Data can be
transmitted via secure wireless links to an edge device or
cloud server where the PD-LSTM module performs
preprocessing (AWT), feature extraction (MFCC, SAE), and
classification. Alerts or dashboards are provided to
caregivers and clinicians for early intervention. This
architecture supports continuous, real-time monitoring while
preserving data privacy through on-edge preprocessing when
required.

3.4. Feature extraction

Mel cepstral approach with Mel-frequency cepstrum
coefficients (MFCC) is a variation of the cepstral method that
takes advantage of the nonlinearity of human sound
perception. A non-linear system is selected because the VS
has a non-linear scale. The Mel filter bank tries to increase
recognition performance. To calculate the Mel scale
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equivalent of each frequency fin Hz, use the following
formula:

Mel(f) = 2595 log,, (1 + fﬁ)

2

The Sparse Autoencoder (SAE) is an axisymmetric NN
with one hidden layer (HL). It is an unsupervised feature
extraction method based on DNN. This network encodes the
input under a HL and strives to reduce error in order to
provide the best-scoring compressed vector. The
fundamental principle of a typical AE model is preserved,
along with a sparse penalty term and a few additional
constraints to improve feature learning and latent
representation extraction from input data. This network
makes use of the sigmoidal activation function. The purpose
of sparsity enforcement is to limit unwanted activation in the
HL. The formula for the activation function is a =
sig(Wx + b). In this case, b is the deviation vector and W
is the weight matrix.

pj == 3i[a(x )] (3)

The Kaullback-Leibler (KBL) divergence approach
serves as the foundation for the punishment term, and the
equation's mathematical representation is as follows:

KBL(pllpj) = pInL+ (1 = p)In =2

1—rh0j

4)

The KBL value will steadily rise with the deviation, but
when it doesn't stray from p, the KBL divergence becomes

zero. The network's loss function can be expressed as
C(W,b).

Cparse = C(W,b) + B X2, KBL(p||p)) )

where f8 is the weight of the sparse penalty term and S,
is the number of neurons in the internal layer.

3.5. Classification

The Bidirectional LSTM (BDLSTM) network is a
combination of BDRNN with LSTM cells. BDLSTM

11

generates the forward hidden sequence h, the backward

hidden sequence H, and the output sequence y by iterating the
forward layer from t = (1,:-+,N) and the backward layer
fromt = (N, --+,1) (where N is the maximum length of input
sequences). The output layer is then updated according to the
following:

he = S(W o,z AF, + Wyzh_1 AF, + by;) (6)
he = S(W . AF; + Wihy 1 AF, + by;) (7)

where S is the hidden layer function applied to each
vector element, W stands for weight matrices, and b for bias

vectors. Every NN unit in the BDLSTM network is an
LSTM cell.
fi = o(WapsAF; + Wiphy_y + Wepce_q + by) )
it = O(WapAF; + Wyihe 1 + Weicey + by) (10)
0r = 0(WapoAFy + Wioht g + Weocr + by) (11)

€t = fCe-1 + i tan R(Wypc AF + Wyche_y + b.) (12)
(13)

where f, i;, 0, ¢, are the forget gate, input gate, output
gate, and cell state at time step t, respectively, and o is the
logistic sigmoid function. The classification output of PD is
obtained by feeding the BDLSTM network outputs to a fully
connected layer.

4. RESULT AND DISCUSSION

In this section, the experimental setup of the PD-LSTM
was implemented using MATLAB 2020b, and the ensuing
experimental findings are represented. The PD-LSTM to
evaluate the model on the collected voice signal, a number of
measures were employed, including F1 score, recall,
accuracy, specificity, and precision.

h; = o, tan h(c;)
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Figure 2. Experimental result of the PD-LSTM approach

The input images are obtained from the EWA-DB
dataset, for voice signal as shown in column 1. In column 2,
the Adaptive wavelet transform (AWT) is applied as a
preprocessing step to reduce the noise. In column 4,
BDLSTM is utilized for classification to determine whether
the PD is Parkinson and normal. The experimental results of
the PD-LSTM approach, are display in Figure 2.

4.1 Performance Analysis

The PD-LSTM approach was evaluated in this section
utilizing several measurements like recall, specificity, F1
score, accuracy, and precision, in the gathered dataset.

accuracy = __ TPHTN (14)
TP+TN+FP+FN
s s TN
Specificity = ——— (15)
Precision = i (16)
TP+FP
recall = —+— 17)
TP+FN
— o (precisionirecall
fl - 2(precision+re‘call) (18)

12

where T,,s and T, indicates the True positive and
negative of the provided images, F,,s and F,., shows the
sample images false positives and negatives.

Table 1. Performance analysis of the PD-LSTM model

Classes | Accura | Specific | Precisi | Reca | F1

cy ity on 1l score

Normal | 99.11% | 98.98% | 98.57 98.97 | 97.58
% % %

Parkins | 99.33% | 98.11% | 97.75 96.99 | 97.67
on % % %

Table 1 presents various classes, the proposed technique
was evaluated for its recall, F1 score, specificity, accuracy,
and precision. The accuracy of the PD-LSTM approach is
99.11% for normal and 99.33% for Parkinson disease.
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Figure 3. Accuracy of the proposed PD-LSTM model
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Figure 4. Loss of the proposed PD-LSTM model

Figure 3 displays the accuracy of the training and testing,
with accuracy on the y-axis and Epochs on the x-axis. The
proposed framework shows an accuracy level of 99.22% for
times when considering the correctness of its evaluation and
training curves. Figure 4 displays the loss graph displayed
against epochs, demonstrating that the loss decreases as
epochs increase. The proposed approach has a low loss of
0.78% while achieving great precision.

4.2 Comparative Analysis

The model shows strong performance in experimental
conditions, real-world deployment in an IoT elder
monitoring system requires testing under variable recording
devices, network conditions, and edge compute constraints.
The PD-LSTM methods accuracy and efficiency were
demonstrated by comparing it to other existing methods. The
BDLSTM approach was used to identify voice signal as
normal and parkinson in order to measure the efficiency.
Using metrics of recall, F1 score, accuracy, and specificity,
the efficacy of the proposed approach is assessed. The
accuracy rate demonstrates that the recommended approach
of the existing methods. The PD-LSTM approach is
contrasted with the existing techniques, including ZFNet-
LHO-DRN [16], FB-DNN [17], and Ma-ST-DGN [20].

13

Table 2. Comparison of the existing model and PD-LSTM

approach
Techniq | Accur | Specific | Precisi | Reca | F1
ues acy ity on 11 score
ZFNet- 89.81 85.28% | 87.2% | 89.13 | 88.23
LHO- % % %
DRN
[16]
FB- 96.15 95.35% | 89.61 93.27 | 94.82
DNN % % % %
[17]
Ma-ST- | 88.71 85.47% | 87.33 86.41 | 82.75
DGN % % % %
[20]
Propose | 99.22 98.56% | 98.16 97.98 | 97.62
d % % % %

Table 2 presents the various techniques of the existing
model and compare the proposed model. The PD-LSTM
technique improves the accuracy 89.81%, 96.15% and
88.71% better than the ZFNet-LHO-DRN [16], FB-DNN
[17], and Ma-ST-DGN [20] respectively. The PD-LSTM
approach outperforms the current methods with an accuracy
of 99.22%. The PD-LSTM improves the accuracy range of
10.47%, 3.19% and 11.85% better than ZFNet-LHO-DRN
[16], FB-DNN [17], and Ma-ST-DGN [20] respectively.

Table 3. Accuracy comparison of the existing models and
PD-LSTM approach

Authors Method Accuracy
Saha et al., [15] | SVM 97.4%
Hasibetal., [18] | CNN 94.64%
Proposed PD-LSTM 99.22%

Table 3 shows an Accuracy comparison of existing
approach and the PD-LSTM approach. The PD-LSTM
approach maintains high accuracy levels 0f 99.22%. The PD-
LSTM approach enhances the total accuracy by 1.86%, and
4.83% better than SVM [15], and CNN [18] respectively.
The comparison above indicates that the PD-LSTM approach
is more accurate than the existing approach.

5. CONCLUSION

In this research, a novel PD-LSTM approach was
proposed for the Parkinson disease classification using an
BDLSTM. The input signals are pre-processed using the
AWT to reduce the noise and enhanced signal. The MFCC is
used to produce the discriminant features and SAE utilized
to extract the features of a voice signal. The BDLSTM is used
to improve the accuracy and classification such as normal
and Parkinson. The performance of the PD-LSTM
approaches was assessed using the metrics such as F1 score,
specificity, recall, accuracy, and precision. The PD-LSTM
approach accomplishes a higher accuracy of 99.22%
respectively. The PD-LSTM approach enhances the total
accuracy by 1.86%, and 4.83% better than SVM, and CNN
respectively. The PD-LSTM improves the accuracy range of
10.47%, 3.19% and 11.85% better than ZFNet-LHO-DRN,
FB-DNN, and Ma-ST-DGN respectively. Moreover, the PD-
LSTM approach can serve as the core classification module
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in an IoT-based elder monitoring system, enabling
continuous remote detection of Parkinson’s symptoms.
Future work will validate the model in on-device/edge
deployments and in diverse real-world IoT settings.
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