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Abstract — Premature newborns cry to let their parents and
others know what they need. It is essential to remember that
premature screamers may scream for a variety of causes. Based
on weeping, parents can identify a baby's emotional and
physical changes and needs. However, quite challenging to
pinpoint the requirement for the incubated newborns that have
jaundice. To overcome these challenges, a novel deep learning-
based CLJFS model is proposed for Cry-based Jaundiced
Infant Signal (CLJFS) classification model. The crying is a
newborn's primary communication, understanding its acoustic
features can provide critical insights into the infant's condition.
The proposed CLJFS model employs a multi-step process
beginning with signal pre-processing using Stationary Wavelet
Transform (SWT) for noise reduction and feature
enhancement. Linear Prediction Coefficients (LPC) are
extracted, followed by feature selection using the Least Absolute
Shrinkage and Selection Operator (LASSO). A Spiking Neural
Network (SNN) then categorizes the cries into three classes:
hunger, fear, and discomfort. The effectiveness of the proposed
CLJFS was evaluate using F1 score, accuracy, precision, recall,
and specificity. The proposed CLJFS model achieved a
classification accuracy 98.9%. The proposed model enhanced
the total accuracy by 2.24%, 4.03%, 10.1%, and 7.03%,
respectively.

Keywords — Infant cry signal, deep learning, Stationary Wavelet
Transform, Linear Prediction Coefficients, Spiking Neural
Network.

1. INTRODUCTION

Crying is the first form of communication for newborns,
serving as their primary means to express physiological
needs, emotions, or discomforts. This complex act requires
coordination between the brain, respiratory system, muscles,
and vocal cords. [I] For new parents and caregivers,
interpreting these cries can be challenging, as the reasons
behind the cries may range from hunger, fatigue, or
discomfort to medical conditions such as jaundice [2].
Advances in understanding the acoustic features of infant
cries have revealed that they carry linguistic signals unique
to specific needs, but distinguishing them often remains
subjective, especially in clinical settings [3, 4].
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Neonatal jaundice, a common condition affecting over
80% of newborns, is caused by elevated bilirubin levels in
the blood [5, 6]. This condition typically manifests within the
first five days after birth and is marked by yellowing of the
skin and tissues. It results from an immature hepatic system
and heightened hemoglobin breakdown, particularly in
preterm infants [7]. Factors such as insufficient milk intake
and genetic predispositions exacerbate the delayed clearance
of bilirubin, necessitating timely diagnosis and management
[8]. Screening tools like Transcutaneous Bilirubin (TcB) or
Total Serum Bilirubin (TSB) are essential for early detection
and prevention of complications such as neurotoxicity.

Understanding neonatal jaundice is critical, especially
for preterm infants or those with specific risk factors such as
hemolysis, sepsis, or glucose-6-phosphate dehydrogenase
(G6PD) deficiency [9]. Addressing the condition requires
identifying underlying causes and implementing strategies
like phototherapy or exchange transfusion when bilirubin
levels exceed established thresholds. Effective management
not only minimizes the risk of neurotoxicity but also ensures
the infant's healthy development [10]. For healthcare
providers and parents, combining medical interventions with
breastfeeding support and vigilance during the critical
postnatal period is essential.

Newborns communicate primarily through crying,
making it challenging for caregivers to identify the exact
cause of distress, particularly in medical conditions like
neonatal jaundice [11]. Jaundice, caused by elevated
bilirubin levels, is common in infants and requires timely
detection and treatment to prevent complications like
neurotoxicity. [12] The subjective interpretation of infant
cries highlights the need for more reliable, objective tools for
diagnosing and managing neonatal health issues effectively.
To overcome this problem, a novel CLJFS model is proposed
for classifying the preterm infant cry signals. The major
research contributions are mentioned below:
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e The main goal of this research CLJFS model
for classifying preterm babies' cry signals in
incubators.

e In Stationary Wavelet Transform (SWT), an
infant cry signal is pre-processed by dissecting
the signal into several frequency components.

e Using deep learning-based ShuffleNet, the
Linear  Prediction  Coefficients (LPCs)
characteristics from the pre-processed signals
are extracted, and the retrieved features are then
chosen using the Least Absolute Shrinkage and
Selection Operator (LASSO).

e The Spiking Neural Network (SNN) will
categorise the signal into three categories:
hunger, fear, and discomfort using the output
from the feature selection phase and the
bilirubin monitoring system.

e  Accuracy, precision, specificity, recall, and F1
score are some of the measures used to evaluate
the performance of the proposed.

The remainder of the work is organized accordingly. The
literature review is summarized in Section 2. Section 3
discusses about the proposed model and Section 4 focuses at
the performance of the proposed approach and compares it to
other methods. Section 5 provides a final explanation of the
conclusion and future scope.

2. LITERATURE SURVEY

In this section, the state-of-the-art in the domains that are
pertinent to the work that is being presented, including data,
deep learning, machine learning methods, and related
studies. Related studies are listed in the following
paragraphs, with an emphasis on those that make use of
categorize infant baby cries.

In 2019 Maghfira, T. N., et al., [13] investigated the
challenge of categorizing five different sorts of emotions or
demands communicated by newborn cries, including signs of
hunger, tiredness, stomachache, discomfort, and the need to
burp. The suggested CNN-RNN model performs better than
the prior approach by an average classification accuracy of
up to 94.97%, according to analysis of the Dunstan Baby
Language dataset.

In 2019 Severini, M., et al., [14] examined by the cry
detection issue in medical settings such as Neonatal Intensive
Care Units (NICUs). The article discusses several DNN-
based single- and multi-channel solutions. After processing
signals using a post-filter, a beam former, and a single-
channel DNN, the assessment showed that training with
actual data enables the attainment of the highest possible
overall performance, with a PRC-AUC of 87.28%.

In 2022 Joshi, V. R., et al., [15] devised for effective
answers to the conundrum of figuring out what causes a baby
to scream. The integration of multiple sophisticated boosting
algorithms at different levels was its main benefit. The
suggested model finally showed excellent performance with
an average classification accuracy of as much as 93.7% after
several comparisons.
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In 2022 Liang, Y. C., et al., [16] suggested using deep
learning (DL) protocols in this study to identify infants'
physiological requirements, including the need for food and
drink, the need to change diapers, emotional needs like the
need to be held or touched, and discomfort from treatments
like shots. CNN outperformed LSTM and ANN across
practically all metrics, achieving up to 60% accuracy in
identifying newborns' unique demands.

In 2022, Lahmiri, S., et al., [17] designed and validated
several deep learning methods to enhance the diagnosis of
baby cry recordings which is the aim of the current work. The
number of neurons in the hidden layers and the number of
convolutional layers in CNN and DFFNN are adjusted in
tandem with one another. In comparison with related works
in the literature, Cepstrum analysis-based coefficients taught
DL systems are powerful instruments that may be applied to
precise diagnosis of newborn cry records to separate healthy
and abnormal signals.

In 2022 Cha, J., & Bae, G. [18] proposed deep learning
to categorize videos of crying babies. The approach uses
autoencoder, deep residual network, and concatenate layer
classification models as well as a variety of audio methods
for extracting features (Short-Time Fourier Transform and
Mel Frequency Cepstral Coefficient). The experiment's
findings demonstrate that, in comparison to previous
machine learning-based models, the suggested model
achieves excellent accuracy in reading newborn cries.

In 2022 Ashwini, K., & Vincent, P. D. R. [19] uses a
Deep Convolutional Neural Network to transform audio
inputs into spectrogram images in order to create a prediction
model for a newborn cry categorization system. A deep
neural network-based newborn cry classification system can
classify sleeping cries with an accuracy of up to 95%. SGDM
optimization with Convolutional neural network achieves
greater prediction accuracy, according to the results.

In the literature review, above existing techniques had
developed using various DL and ML approaches to infant cry
signals. However, existing methods for infant cry signal
classification often suffer from limited accuracy due to
inadequate feature extraction and preprocessing techniques.
Additionally, many models fail to effectively handle the
variability and noise inherent in real-world cry signal
datasets. In this research, CLJFS method was proposed for
classifying the infant baby cries.

3. PROPOSED METHODOLOGY

This section proposes a unique method for cry signal
categorization of preterm infants in incubator called
Neonatal Advanced Multisource Experiment with Cry Signal
(CLJFS). A baby's cry signal is pre-processed, the features
are retrieved using Linear Prediction Coefficients (LPCs),
and then LASSO selects the features. A bilirubin monitoring
system that tracks and forecasts bilirubin levels is part of the
suggested system. The Spiking Neural Network (SNN) will
categorize the signal into three categories: hunger, fear, and
discomfort using the output from the feature selection stage
and the bilirubin monitoring system. Finding these signals
aids in pinpointing the origin of newborn crying.
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Figure 1. The Overall Workflow of the Proposed Methodology

3.1 Dataset Description

The NICU data from adjacent hospitals and neighboring
colonies are used to create the database [11]. Both at home
and at the clinic, the baby's activity levels are constantly
tracked. Both parents and hospital employees have given
their approval for the data collecting. The database contains
27 sound signal streams, 12 from different neonates and the
rest from babies who are similar. For both men and women,
distinct voices may be heard in this audio.

3.2 Pre-processing

Baby cries are recorded and labeled by caregivers or
medical professionals in homes or hospitals using digital
recorders, but the databases are small due to the sensitive data
collection process. Pre-processing involves audio
segmentation and denoising to remove background noise like
conversation or footsteps, ensuring accurate analysis.
Stationary Wavelet Transform (SWT) is used to decompose
cry signals into frequency subbands, preserving time
invariance and improving feature extraction for
classification.

The input medical image (I) index set displays the pixels
in the xth column and yth row, which is thought of as
2D[x,y],I[x,y]. To produce the vertical coefficient
(LH), approximation  coefficients = (LL),  horizontal
coefficient (HL), and diagonal coefficient (HH), SWT
performs first level 2D-SWT on the picture. Using the
2DSWT method, two wavelet subbands were recovered from
the medical picture, one for each subband coefficient of the
wavelet transform. The following is a representation of the
2DSWT's approximate and detailed coefficients:

(1)

Civt,jn = Dl=—oo h(u)h(u)c”’i']}zi'n”iv’
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d~1,i+1,j,n = Yl=—oo h(u)h(v)d1,i,j+2i,n+2iv, 2
CNiz,i+1,j,n = Zi.lo=—oo h(u)h(v)dz,i,jq.zi,n.;.ziv, (3)
d~3,i+1,j,n = Yl=—oo h(u)h(v)d3,i_j+2i,n+2iV, 4

Where, respectively, ¢; ; and d; ; stand for approximate
and detailed coefficients. Following 2DSWT decomposition,
the concatenation of the four subbands is always the same
size as the original input. 2D inverse SWT (2DISWT) may
be traced back to 2DSWT by reversing the techniques.

3.3 Feature Extraction

Infant cries contain vocalizations, silences, and
interruptions, reflecting physiological and prosodic
information. Feature extraction, a key step in machine
learning, involves deriving discriminative features from cry
signals in time, frequency, or cepstral domains. Time-domain
features like amplitude and energy are simple but prone to
noise, while frequency-domain features, including MFCCs
and LPCs, better capture signal variations and cyclic
patterns. Cry signals are segmented into overlapping frames
using a Hamming window to ensure quasi-stationarity,
enabling short-term analysis. Autocorrelation and LPC
coefficients are calculated for each frame, supporting
effective cry signal characterization. Combining acoustic,
prosodic, and image-based features, spectrograms enhance
discrimination and classification. Advanced techniques like
ShuffleNet, with depth-wise separable convolutions, reduce
computational costs while maintaining high performance,
serving as an efficient encoder for transforming cry signal
features. This multi-dimensional approach improves cry
signal analysis and classification, especially for medical
applications.
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where the output feature maps' height, width, and depth
are denoted by h, w and d, respectively; the input and output
streams are denoted by C;, and C,,; and the kernel size is
denoted by k. ShuffleNet uses a depth-separable
convolutional layer to modify the key feature channels.
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Here, the cepstrum coefficient is defined as F., and
l. stands for the linear prediction coefficient. LPC are not
easily influenced by artefact. Compared to LPC features,
LPC features provide reduced mistake rates. Due to
theoretical restrictions, the higher-level variances of cepstral
factors were higher as we traverse through lower to higher
level cepstral factors.
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Figure 2. The architecture of Shuffled Spiking Neural Network

The LPC determinations are notorious for being
extremely vulnerable to quantization noise. High-pitch
speech signals are difficult to distinguish from source-filters
employing cepstral evaluation in the frequency domain.
Higher-order cepstral factors are impacted by noise, but the
lower-order cepstral coefficients are responsive to spectral
slope. The feature selection phase uses the retrieved LPC
features to choose the most pertinent characteristics for
categorizing the cry signal.

3.4 Feature Selection

LASSO (Least Absolute Shrinkage and Selection
Operator) is a machine learning technique used for feature
selection and linear regression. By adding an L1
regularization term to the cost function, LASSO reduces the
coefficients of less important features to zero, effectively
selecting the most relevant ones. This reduces model
complexity, prevents overfitting, and ensures interpretability.
The technique is particularly effective for high-dimensional
data, as it produces sparse solutions by including only
essential features. However, it performs better when the
number of features is lower than the sample size. By
minimizing redundant features and optimizing the Ordinary
Least Squares (OLS) loss, LASSO enhances model
generalization and efficiency. The LASSO algorithm then
learns the coefficients of sparse regression as

Ly = argming ||x —y x L||* + y||L|| sel,

Where the response vector is equal to x4, X,
feature matrix is equal to y = y,, v, V., and the trade-off
parameter is equal to y = 0.005 for comparing L,'s sparsity
and fitting efficiency. The effect of sparse coefficient
valuation is controlled by the regularisation constraint. The
three types of infant cries are fear, hunger, and discomfort.
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After that, the best feature subset is flattened and used as
input for the classification process.

3.5 Classification

Spiking Neural Network may achieve remarkable
accuracy with few synapses, Spiking Convolutional Neural
Network architecture has drawn a lot of interest recently.
Compared to CNN, SNN uses a substantial amount less
energy. Average pooling, convolution, and other standard
network layers are supported by SNN. For the SNN
operations, the input cry signal must first be converted into
spikes. The suggested SNN consists of a pooling layer, a
fully-connected layer, and a hierarchy of convolutional
layers. SNNs depend on discrete occurrences occurring at
specific moments in time rather than continuous values.
Some neurons in the SNN model take longer to activate,
which increases their quality value. Neuron threshold is
exceeded, it activates, influencing neighboring neurons,
while failure to exceed the threshold reduces activity
temporarily. Activation is signaled by acute spikes, with
timing determined by pulse intervals. SNNs rely on coders to
encode signals into spike patterns and decoders to translate
these patterns into numerical outputs. Neuron activation
depends on crossing the threshold, with outputs governed by
pulse frequency and range in the coding scheme. Decoding
converts spike codes into numerical values for processing.

Equation (8) is used to calculate the pulse value of the
SNN via the Leakage Integral and Fire algorithm (LIF).

Vyu () Ay (t)
Iu(t) - I;u gt

=Cy ®)

Where I, stands for "current unit," V;,, for "volt unit,"
C,, for "capacitor unit," R,, for "resistor unit," and t for "time
unit." An SNN-based classifier is used in supervised learning
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models. Each learning instance corresponds to one output
neuron in the SNN, whose neurons are linked. In the rank-
order learning process, the synaptic weight between neurons
of i and j is calculated,

wt; ;(t) = mod°m@er )

)

where order(i,j) denotes the initial order of the
received spike and wt;; denotes the associated synapse
between neurons i and j. The spike-based synaptic plasticity
learning rule modifies the synaptic weight using a drift
parameter. As a result, the synaptic weights are altered while
taking the incidence of future spikes over time, or Sp;(t),
naturally into account. In order to update the weights,
equation (10),

wt; j(t — 1) + drift, Sp;(t) =1

wt; ;(t — 1) + drift, Sp;(t) =0 (10)

wt; ;(t) = {

where Sp;(t) is the time t's spike. If neuron i spikes at
time t, the synaptic weight is potentiated as opposed to
reduced if neuron i spikes after the presynaptic neuron fires.
Benefits of the SNN include the ability to categorize the
spatiotemporal cry signal into categories like hunger, fear,
and discomfort.

4. RESULTS AND DISCUSSIONS

The proposed CLIJFS approach and its efficiency based
on LPC characteristics have been analyzed through Matlab-
2019b. The obtained cry signals collected through [11], and
the corresponding wave patterns are preprocessed and
converted as frames to enhance subsequent processes. The
spectrogram signal having prosodic characteristics obtained
from actual wavelet patterns have been categorized using
CLIJFS. It is possible to compute the assessment of the test
cases using metrics like Fl-score, recall, exactness,
specificity, and correctness.

4.1 Performance analysis

The proposed CLJF Scan be evaluated based on
accuracy, specificity, precision, recall, and F1 score. The
effectiveness of the suggested network for classifying
various cry signal kinds is shown in table 1 and is visually
depicted in Figure 3.

Table 1. Performance assessment of the CLJFS model

Classes | Precis | Specifi | Recal | Accura F1
ion city 1 cy score
Hunger | 97.02 | 96.24 | 96.25 | 99.14 | 98.24
Fear 96.12 | 95.71 | 95.05 | 98.25 | 97.68
Discomf | 98.27 | 97.04 | 97.15 | 99.51 | 98.24
ort
The effectiveness of the suggested CLJFS for

categorizing various cry signals, such as hunger, fear, and
discomfort, is shown in the table 1. The specificity, precision,
recall, 1 score, and accuracy of the CLJFS model were used
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to determine its efficacy. The suggested model has a 98.9%
total accuracy. The total specificity, precision, recall, and F1
score for the proposed CLJF Sare 96.33%, 97.13%, 96.15%,
and 98.05%, respectively

100
m Hunger
B Fear

Discomfort
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96
95
94 I
92

Acouracy

o

Specificity Precision Recall Fi score

Figure 3. Graphical representations for different emotions
of the premature baby
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Figure 4. ROC curve of the proposed CLJFS model

Figure.4 shows the ROC produced for several classes of
preterm newborn cries using the acquired dataset that obtains
a better AUC. With parameters like TPR on the y-axis and
FPR on the x-axis, the suggested CLJFS obtained AUC of
0.991 for hunger, 0.982 for fear, and 0.995 for pain.
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Figure 5. Accuracy curve of the proposed CLJFS
model
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The spectrum of precision on the vertical axis as well as
the number of epochs on the horizontal axis may be used to
visualize the accuracy curve shown in Figure 5. As the
number of epochs increases, so does the accuracy of the
CLIJFS. Figure 6 illustrate the epoch and loss range, which
demonstrates that the loss of the CLJFS is decreased as the
epoch rises. The suggested CLJFS achieves great accuracy
for recognizing the various cry signal types. This study is
currently determining how many epochs are required to get a
high degree of accuracy. From the fallouts, the minimum
error rate was achieved at 98.9% testing accuracy, leading to
the classification accuracy of CLJFS being attained after 100
training epochs.

4.2. Comparative analysis

The effectiveness of each Deep Learning network was
evaluated in order to confirm that the CLJFS achieves high
accuracy in its outputs. The proposed CLJFS was compared
with deep learning classifiers including AlexNet, GoogleNet,
and MobileNet in a contrast analysis. The obtained accuracy
value using the proposed SNN is 98.9%, that has been higher
than the traditional DL models for the feature extraction
process. Performance estimation was done using several
measures, including precision, recall, specificity, fl score,
and accuracy of each DL network.

Table 2. Comparison among classic deep neural networks
for feature extraction

Network | Paramete | Flop | Complexit | Accurac
s rs s y y

AlexNet 56980k 722 720 90.2%

M

GoogleN 7544k 525 140 98.01%
et M

MobileN 81.45k 568 170 96.68%
et M

ShuffleN 17.3k 38M 38 98.96%
et

As shown in table 2, traditional networks like AlexNet,
GoogleNet, and MobileNet are more complex since they
need numerous parameters to attain high accuracy.
ShuffleNet, on the other hand, employs a smaller number of
parameters, which reduces complexity while retaining high

accuracy levels of 98.9%. When compared to conventional
networks, complexity has been reduced by a factor of four.
Table 3 displays a comparison analysis of earlier deep
learning networks for classification.

Table 3. Comparative Analysis among Traditional models
for classification

Network | Precisi | Specifici | Reca | FI | Accura
s on ty 1 scor cy
GoogleN 95.6 95.4 96.8 966.4 95.2
MogzleN 95.0 97.4 97.5 | 98.5 97.8
Alei[Net 86.7 88.1 85.6 | 87.1 90.2
SNN 97.1 96.3 96.1 | 98.0 | 98.9

Table 3 analyses many DL approaches based on certain
performance criteria, with the goal of reaching the widest
accuracy range in the categorization phase of premature
newborn scream. Additionally, compared to SNN,
conventional networks do not reach great accuracy.
Compared to AlexNet and GoogleNet, the SNN improves the
total accuracy range by 8.7%, 3.7%, and 1.1%.

Table 4. Accuracy comparison of state-of-art models and
Proposed model

Authors Method Accuracy
Ji, C., et al (2019) DL based merged 96.74%.
feature matrix
Maghfira., et al o
(2020) CNN-RNN 94.97%
Ashwini., et al o
(2021) SVM-RBF 88.89%
Anjali., et al . o
(2022 Finetuned VGG16 92.0%
Proposed CLJFS 98.96%

Table 4, the practical length of evaluation images from
the obtained dataset in the testing phase was tallied to
evaluate the efficacy of various methods. Modern models
were compared against one another using certain
performance metrics while maintaining the necessary
classification accuracy. In comparison to CNN-RNN, SVM-
RBF, CNN-RNN and Finetuned VGG16, the CLIJFS
improves overall accuracy by 2.24%, 4.03%, 10.1%, and
7.03%, respectively. Therefore, the CLJFS research
outcomes are quite trustworthy for identifying the emotions
of preterm newborns from their cry signal.

5. CONCLUSION

In this research a novel CLJFS model is proposed for
Cry-based Jaundiced Infant Signal (CLJFS) classification
model. The crying is a newborn's primary communication,
understanding its acoustic features can provide critical
insights into the infant's condition. The proposed CLJFS
model employs a multi-step process beginning with signal
pre-processing using Stationary Wavelet Transform (SWT)
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for noise reduction and feature enhancement. Linear
Prediction Coefficients (LPC) are extracted, followed by
feature selection using the Least Absolute Shrinkage and
Selection Operator (LASSO). A Spiking Neural Network
(SNN) then categorizes the cries into three classes: hunger,
fear, and discomfort. The effectiveness of the proposed
CLJFS was evaluate using F1 score, accuracy, precision,
recall, and specificity. The proposed CLJFS model achieved
a classification accuracy 98.9%. The proposed model
enhanced the total accuracy by 2.24%, 4.03%, 10.1%, and
7.03%, respectively. Future work will focus on expanding
the dataset to include diverse cry signals from varied
populations and integrating real-time monitoring systems.
Additionally, exploring advanced neural architectures could
further enhance the classification accuracy and robustness of
the model.
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